SMALL-MOLECULE PROBES FOR CHRONOBIOLOGY AND MEDICINE
The circadian clock is our intrinsic biological timer orchestrating essential cellular and physiological processes. A major research effort in my lab focuses on small molecules capable of enhancing the amplitude, or robustness, of the circadian clock. We hypothesize that such clock-enhancing small molecules (dubbed CEMs) will improve timing and therefore performance of fundamental physiological pathways, which can be exploited for therapeutic gains in aging and chronic diseases such as metabolic disease known to suffer dampened circadian rhythms.
My lab previously identified CEMs (PNAS 2012; Cell Mol Life Sci 2013) via high-throughput chemical screening and showed that these compounds can potently enhance peripheral and/or central circadian clocks. In a recent breakthrough study, we showed that a naturally occurring flavonoid enriched in citrus peels, called Nobiletin, is a robust CEM, and displays potent clock-dependent protection against metabolic diseases in both diet- and mutation-induced mouse models (Cell Metabolism 2016; Nutr Metab 2015). Importantly, we identified the nuclear receptors RORs as the direct protein target of Nobiletin (see Figure). These studies laid an excellent foundation for our continuing investigation of circadian regulation of energy homeostasis. Extending beyond metabolic studies, we are also gaining important insights into the roles of Nobiletin and RORs in healthy aging and other clock-related diseases. A long-term goal of this project is to develop novel Nobiletin derivatives for translational and clinical applications.
We have also elucidated novel regulatory mechanisms of metabolic homeostasis. Following a serendipitous finding where a partial Clock-deficient mouse mutant surprisingly showed compensatory metabolic enhancement, our in vitro studies uncovered a previously unknown mechanism involving autophagy-dependent turnover of the central clock transcription factor BMAL1 (Jeong et al., Sci Rep 2015). Another emerging topic in our lab is the microbial regulatory mechanism for energy balance. Combining microbiome sequencing, metabolomics and fecal microbiota transplantation, we showed that dietary fiber causes transmissible microbial and metabolomic remodeling, leading to improved glucose homeostasis in diabetic mice (He et al., Sci Rep 2015). These exciting on-going projects are expected to synergize with small-molecule studies, and may lead to innovative therapeutic regimens.
UTHealth Medical School
Department of Biochemistry and Molecular Biology
6431 Fannin Street, MSB 6.128
Houston, Texas 77030
713-500-6284 Direct 713-500-0652 Fax
Ph.D. - Columbia University, New York
Postdoctoral Fellow - The University of Texas Southwestern, Dallas
Circadian clocks, Small molecule modulators , Metabolic disease, Aging, Nutrition and Diets, Autophagy, Microbiome
He, B., Nohara, K., Park, N., Y.S., Guillory, B., Zhao, Z., Garcia, J.M., Koike, N., Lee, C.C., Takahashi, J.S., Yoo, S.H., and Chen, Z.
Cell Metabolism 23: 610-21, 2016. PMID: 27076076
read moreHe, B., Chen, Z.
Curr. Drug Metab. 17(5): 503-512, 2016. PMID: 26750111
read moreChen Z, Odstrcil EA, Tu BP, McKnight SL.
Science. 2007 Jun 29;316(5833):1916-9.
Chen Z, Yoo SH, Park YS, Kim KH, Wei S, Buhr E, Ye ZY, Pan HL, Takahashi JS.
Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):101-6. doi: 10.1073/pnas.1118034108. Epub 2011 Dec 19.
Umemura Y1, Koike N1, Matsumoto T1, Yoo SH2, Chen Z2, Yasuhara N3, Takahashi JS4, Yagita K5.
Chen Z, Yoo SH, Takahashi JS.
Cell Mol Life Sci. 2013 Aug; 70(16):2985-98. doi: 10.1007/s00018-012-1207-y. Epub 2012 Nov 16.
PMID: 23161063
read moreHe B1, Nohara K1, Ajami NJ2, Michalek RD3, Tian X2, Wong M2, Losee-Olson SH4, Petrosino JF2, Yoo SH1, Shimomura K5, Chen Z1
Sci Rep. 2015 Jun 4;5:10604. doi: 10.1038/srep10604
PMCID:PMC4455235
read moreNohara K1, Shin Y1, Park N2, Jeong K1, He B1, Koike N3, Yoo SH1, Chen Z1
Nutr Metab (Lond). 2015 Jun 9;12:23. doi: 10.1186/s12986-015-0020-7. eCollection 2015
Front Endocrinol (Lausanne). 2015 Mar 23;6:35. doi: 10.3389/fendo.2015.00035. eCollection 2015
Jeong K1, He B1, Nohara K1, Park N2, Shin Y1, Kim S1, Shimomura K3, Koike N4, Yoo SH1, Chen Z1
Sci Rep. 2015 Jul 31;5:12801. doi: 10.1038/srep12801
Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M, Nussbaum J, Liu X, Chen Z, Chen ZJ, Green CB, Takahashi JS.
Cell. 2013 Feb 28;152(5):1091-105. doi: 10.1016/j.cell.2013.01.055.