Zheng (Jake) Chen, Ph.D.

Associate Professor
BCB Graduate Program

Description of Research


The circadian clock is our intrinsic biological timer orchestrating essential cellular and physiological processes. A major research effort in my lab focuses on small molecules capable of enhancing the amplitude, or robustness, of the circadian clock. We hypothesize that such clock-enhancing small molecules (dubbed CEMs) will improve timing and therefore performance of fundamental physiological pathways, which can be exploited for therapeutic gains in aging and chronic diseases such as metabolic disease known to suffer dampened circadian rhythms.

My lab previously identified CEMs (PNAS 2012; Cell Mol Life Sci 2013) via high-throughput chemical screening and showed that these compounds can potently enhance peripheral and/or central circadian clocks. In a recent breakthrough study, we showed that a naturally occurring flavonoid enriched in citrus peels, called Nobiletin, is a robust CEM, and displays potent clock-dependent protection against metabolic diseases in both diet- and mutation-induced mouse models (Cell Metabolism 2016; Nutr Metab 2015). Importantly, we identified the nuclear receptors RORs as the direct protein target of Nobiletin (see Figure). These studies laid an excellent foundation for our continuing investigation of circadian regulation of energy homeostasis. Extending beyond metabolic studies, we are also gaining important insights into the roles of Nobiletin and RORs in healthy aging and other clock-related diseases. A long-term goal of this project is to develop novel Nobiletin derivatives for translational and clinical applications.

We have also elucidated novel regulatory mechanisms of metabolic homeostasis. Following a serendipitous finding where a partial Clock-deficient mouse mutant surprisingly showed compensatory metabolic enhancement, our in vitro studies uncovered a previously unknown mechanism involving autophagy-dependent turnover of the central clock transcription factor BMAL1 (Jeong et al., Sci Rep 2015). Another emerging topic in our lab is the microbial regulatory mechanism for energy balance. Combining microbiome sequencing, metabolomics and fecal microbiota transplantation, we showed that dietary fiber causes transmissible microbial and metabolomic remodeling, leading to improved glucose homeostasis in diabetic mice (He et al., Sci Rep 2015). These exciting on-going projects are expected to synergize with small-molecule studies, and may lead to innovative therapeutic regimens.

GA-revised JPG


Contact Information


UTHealth Medical School
Department of Biochemistry and Molecular Biology
6431 Fannin Street, MSB 6.128
Houston, Texas 77030

713-500-6284  Direct  713-500-0652 Fax


Ph.D. - Columbia University, New York

Postdoctoral Fellow - The University of Texas Southwestern, Dallas

Research Interests

Circadian clocks, Small molecule modulators , Metabolic disease, Aging, Nutrition and Diets, Autophagy, Microbiome


The small molecule Nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome.

He, B., Nohara, K., Park, N., Y.S., Guillory, B., Zhao, Z., Garcia, J.M., Koike, N., Lee, C.C., Takahashi, J.S., Yoo, S.H., and Chen, Z.

Cell Metabolism 23: 610-21, 2016. PMID: 27076076

read more
Molecular targets for small-molecule modulators of circadian clocks.

He, B., Chen, Z.

Curr. Drug Metab. 17(5): 503-512, 2016. PMID: 26750111

read more
Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity

Chen Z, Odstrcil EA, Tu BP, McKnight SL.

Science. 2007 Jun 29;316(5833):1916-9.

PMID: 17600220

read more
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening.

Chen Z, Yoo SH, Park YS, Kim KH, Wei S, Buhr E, Ye ZY, Pan HL, Takahashi JS.

Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):101-6. doi: 10.1073/pnas.1118034108. Epub 2011 Dec 19.

PMID: 22184224

read more
Small molecule modifiers of circadian clocks.

Chen Z, Yoo SH, Takahashi JS.

Cell Mol Life Sci.  2013 Aug; 70(16):2985-98. doi: 10.1007/s00018-012-1207-y. Epub 2012 Nov 16.

PMID: 23161063

read more
Manipulating the circadian and sleep cycles to protect against metabolic disease

Nohara K1, Yoo SH1, Chen ZJ1

Front Endocrinol (Lausanne). 2015 Mar 23;6:35. doi: 10.3389/fendo.2015.00035. eCollection 2015

PMCID:  PMC4369727

read more
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm.

Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M, Nussbaum J, Liu X, Chen Z, Chen ZJ, Green CB, Takahashi JS.

Cell. 2013 Feb 28;152(5):1091-105. doi: 10.1016/j.cell.2013.01.055.

PMID: 23452855

read more
© Copyright 2008-Present - The University of Texas Health Science Center at Houston (UTHealth)