Leng Han, Ph.D.

Assistant Professor
CPRIT SCHOLAR Cancer Prevention Research Institute of Texas


Description of Research

Our lab utilized the high-throughput technologies to dissect the molecular mechanism in complex diseases. We are interested on exciting topics but not limited to:

1. Integrative Analysis of Complex Diseases

Recent advances in genomic technologies and the ensuing deluge of genomic information related to cancer have accelerated the convergence of discovery science with clinical medicine. Successful translations of genomics into therapeutics and diagnostics reinforce its potential for personalizing medicine. For example, as one of the most important cancer genomic data resources, the Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies (Han et al., Cancer Cell, 2015; Han et al., Nature Communications, 2014; TCGA, Nature Genetics, 2013). We also interested in other complex diseases, such as stem cells (Wang et al., Cell Stem Cell, 2014; Wang et al., Cell Stem Cell, 2013), cardiovascular diseases (Dey*, Han* et al., Circulation Research, 2013; Lan et al., Cell Stem Cell, 2013), psychiatric diseases (Luo*, Huang*, Han* et al., Schizophrenia Bulletin, 2014), etc.

2. High-throughput Data Mining

High-throughput technologies have greatly improved our ability to evaluate the molecular changes that occur during various biological processes. With the development of next-generation sequencing, our understanding has been advanced through the use of a variety of platforms: methy-seq, ChIP-seq, exome-seq and RNA-seq. The large amount of publicly available next-generation sequencing data, such as datasets from TCGA and ENCODE, has created enormous opportunities for researchers to conduct genomic analysis beyond the traditional sequencing analysis. Transforming genomic information into biomedical and biological knowledge requires creative and innovative computational methods for all aspects of genomics. Therefore, the research in my lab will focus on computational analysis from genomic sequences to other post-genomic data, including both DNA and RNA sequences, protein profiling, and epigenetic profiling, in an ongoing effort to find hidden treasures (Han et al., Briefings in Bioinformatics, 2014; Samuels*, Han* et al., Trends in Genetics, 2013).

Basic RGB

Contact Information

Leng.Han@uth.tmc.edu

UTHealth Medical School
Department of Biochemistry and Molecular Biology
6431 Fannin Street, MSB 6.166
Houston, Texas 77030

713-500-6039 Direct  713-500-0652 Fax

Education

Ph.D. - Chinese Academy of Sciences

Postdoctoral Fellow - Stanford University

Postdoctoral Fellow - The University of Texas MD Anderson Cancer Center

Research Interests

Bioinformatics, Next-Generation Sequencing, Cancer Genomics

Publications

The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers

Han L*, Diao L*, Yu S*, Xu X*, Li J, Zhang R, Yang Y, Werner HM, Eterovic AK, Yuan Y, Li J, Nair N, Minelli R, Tsang YH, Cheung LW, Jeong KJ, Roszik J, Ju Z, Woodman SE, Lu Y, Scott KL, Li JB, Mills GB, Liang H.

Cancer Cell, 2015 Oct 12;28(4):515-28.

PMCID: PMC4605878

read more
TANRIC: An Interactive Open Platform to Explore the Function of lncRNAs in Cancer

Li J*, Han L*, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein J, Liang H.

Cancer Research, 2015, 75: 3728-3733.

PMCID: PMC4573884

read more
Alternative applications for distinct RNA sequencing strategies.

Han L*, Vickers KC*, Samuels DC, Guo Y.

Briefings in Bioinformatics, 2015, 16:629-639.

PMCID: PMC4542857

read more
The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes.

Han L*, Yuan Y*, Zheng S, Yang Y, Li J, Edgerton ME, Diao L, Xu Y, Verhaak RG, and Liang H.

Nature Communications, 2014, 5: 3963.

PMCID: PMC4339277

read more
Finding the lost treasures in exome sequencing data

Samuels DC*, Han L*, Li J, Quanghu S, Clark TA, Shyr Y, and Guo Y

Trends in Genetics, 2013, 29: 593-599.

PMCID: PMC3926691

read more
© Copyright 2008-Present - The University of Texas Health Science Center at Houston (UTHealth)