Shock Library

The Second Annual Shock Symposium Educational Sessions and Discussions

The Third Annual Shock Symposium Educational Sessions and Discussions

Suggested Reading Material

  1. Stretch, R., et al., National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol, 2014. 64(14): p. 1407-15.
  2. Hochman, J.S., et al., Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med, 1999. 341(9): p. 625-34.
  3. Thiele, H., et al., Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med, 2012. 367(14): p. 1287-96.
  4. Raban V. Jeger, M.D.R., MD, MSc; Patrick R. Hunziker, MD; Matthias E. Pfisterer, MD; Jean-Christophe Stauffer, MD; Paul Erne, MD; Philip Urban, MD; for the AMIS Plus Registry Investigators. Ten-Year Trends in the Incidence and Treatment, 2008.
  5. Rathod, K.S., et al., Contemporary trends in cardiogenic shock: Incidence, intra-aortic balloon pump utilisation and outcomes from the London Heart Attack Group. Eur Heart J Acute Cardiovasc Care, 2018. 7(1): p. 16-27.
  6. Backhaus, T., et al., Management and predictors of outcome in unselected patients with cardiogenic shock complicating acute ST-segment elevation myocardial infarction: results from the Bremen STEMI Registry. Clin Res Cardiol, 2018. 107(5): p. 371-379.
  7. Jeger, R.V., et al., Ten-year trends in the incidence and treatment of cardiogenic shock. Ann Intern Med, 2008. 149(9): p. 618-26.
  8. Aissaoui, N., et al., Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: a report from the USIK 1995, USIC 2000, and FAST-MI French nationwide registries. Eur Heart J, 2012. 33(20): p. 2535-43.
  9. Wayangankar, S.A., et al., Temporal Trends and Outcomes of Patients Undergoing Percutaneous Coronary Interventions for Cardiogenic Shock in the Setting of Acute Myocardial Infarction: A Report From the CathPCI Registry. JACC Cardiovasc Interv, 2016. 9(4): p. 341-351.
  10. Mahmoud, A.N., et al., Prevalence, Causes, and Predictors of 30-Day Readmissions Following Hospitalization With Acute Myocardial Infarction Complicated By Cardiogenic Shock: Findings From the 2013-2014 National Readmissions Database. J Am Heart Assoc, 2018. 7(6).
  11. van Diepen, S., et al., Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation, 2017. 136(16): p. e232-e268.
  12. Ponikowski, P., et al., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J, 2016. 37(27): p. 2129-2200.
  13. Thiele, H., et al., Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med, 2012. 367(14): p. 1287-96.
  14. Thiele, H., et al., PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N Engl J Med, 2017. 377(25): p. 2419-2432.
  15. Menon, V., et al., Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry. Am J Med, 2000. 108(5): p. 374-80.
  16. Baran, D.A., et al., SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv, 2019.
  17. Jentzer, J.C., et al., Cardiogenic Shock Classification to Predict Mortality in the Cardiac Intensive Care Unit. J Am Coll Cardiol, 2019. 74(17): p. 2117-2128.
  18. Jneid, H., et al., 2017 AHA/ACC Clinical Performance and Quality Measures for Adults With ST-Elevation and Non-ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circ Cardiovasc Qual Outcomes, 2017. 10(10).
  19. Hochman, J.S., et al., Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA, 2006. 295(21): p. 2511-5.
  20. Sleeper, L.A., et al., Functional status and quality of life after emergency revascularization for cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol, 2005. 46(2): p. 266-73.
  21. Wong, S.C., et al., Angiographic findings and clinical correlates in patients with cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK Trial Registry. Should we emergently revascularize Occluded Coronaries for cardiogenic shocK? J Am Coll Cardiol, 2000. 36(3 Suppl A): p. 1077-83.
  22. Webb, J.G., et al., Percutaneous coronary intervention for cardiogenic shock in the SHOCK trial. J Am Coll Cardiol, 2003. 42(8): p. 1380-6.
  23. Sanborn, T.A., et al., Correlates of one-year survival inpatients with cardiogenic shock complicating acute myocardial infarction: angiographic findings from the SHOCK trial. J Am Coll Cardiol, 2003. 42(8): p. 1373-9.
  24. Thiele, H., et al., PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N Engl J Med, 2017. 377(25): p. 2419-2432.
  25. Thiele, H., et al., One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N Engl J Med, 2018. 379(18): p. 1699-1710.
  26. Mehta, S.R., et al., Complete Revascularization with Multivessel PCI for Myocardial Infarction. N Engl J Med, 2019. 381(15): p. 1411-1421.
  27. Josiassen, J., et al., Prognostic importance of culprit lesion location in cardiogenic shock due to myocardial infarction. Eur Heart J Acute Cardiovasc Care, 2020
  28. Fuernau, G., et al., Culprit lesion location and outcome in patients with cardiogenic shock complicating myocardial infarction: a substudy of the IABP-SHOCK II-trial. Clin Res Cardiol, 2016. 105(12): p. 1030-1041.
  29. Ledwoch, J., et al., Drug-eluting stents versus bare-metal stents in acute myocardial infarction with cardiogenic shock. Heart, 2017. 103(15): p. 1177-1184.
  30. Jaguszewski, M., et al., Drug-eluting stents vs. bare metal stents in patients with cardiogenic shock: a comparison by propensity score analysis. J Cardiovasc Med (Hagerstown), 2015. 16(3): p. 220-9.
  31. Guedeney, P., et al., Radial versus femoral artery access for percutaneous coronary artery intervention in patients with acute myocardial infarction and multivessel disease complicated by cardiogenic shock: Subanalysis from the CULPRIT-SHOCK trial. Am Heart J, 2020. 225: p. 60-68.
  32. Pancholy, S.B., et al., Impact of access site choice on outcomes of patients with cardiogenic shock undergoing percutaneous coronary intervention: A systematic review and meta-analysis. Am Heart J, 2015. 170(2): p. 353-61.
  33. Elbadawi, A., et al., Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. JACC Cardiovasc Interv, 2019. 12(18): p. 1825-1836.
  34. Gregoric, I.D., et al., Perioperative use of TandemHeart percutaneous ventricular assist device in surgical repair of postinfarction ventricular septal defect. ASAIO J, 2014. 60(5): p. 529-32.
  35. Rogers, P.A., et al., Revascularization improves mortality in elderly patients with acute myocardial infarction complicated by cardiogenic shock. Int J Cardiol, 2014. 172(1): p. 239-41.
  36. White, H.D., et al., Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by cardiogenic shock: results from the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) trial. Circulation, 2005. 112(13): p. 1992-2001.
  37. Smilowitz, N.R., et al., Coronary artery bypass grafting versus percutaneous coronary intervention for myocardial infarction complicated by cardiogenic shock. Am Heart J, 2020.
  38. Smilowitz, N.R., et al., Coronary revascularization and circulatory support strategies in patients with myocardial infarction, multi-vessel coronary artery disease, and cardiogenic shock: Insights from an international survey. Am Heart J, 2020. 225: p. 55-59.
  39. Richard, C., et al., Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA, 2003. 290(20): p. 2713-20.
  40. Binanay, C., et al., Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA, 2005. 294(13): p. 1625-33.
  41. Harvey, S., et al., Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet, 2005. 366(9484): p. 472-7.
  42. Rossello, X., et al., Impact of Pulmonary Artery Catheter Use on Short- and Long-Term Mortality in Patients with Cardiogenic Shock. Cardiology, 2017. 136(1): p. 61-69.
  43. Lim, H.S. and N. Howell, Cardiogenic Shock Due to End-Stage Heart Failure and Acute Myocardial Infarction: Characteristics and Outcome of Temporary Mechanical Circulatory Support. Shock, 2018. 50(2): p. 167-172.
  44. Fuernau, G., et al., Mild Hypothermia in Cardiogenic Shock Complicating Myocardial Infarction. Circulation, 2019. 139(4): p. 448-457.
  45. Haendchen, R.V., et al., Prevention of ischemic injury and early reperfusion derangements by hypothermic retroperfusion. J Am Coll Cardiol, 1983. 1(4): p. 1067-80.
  46. Polderman, K.H., Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality–Part 2: Practical aspects and side effects. Intensive Care Med, 2004. 30(5): p. 757-69.
  47. De Backer, D., et al., Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med, 2010. 362(9): p. 779-89.
  48. Levy, B., et al., Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction. J Am Coll Cardiol, 2018. 72(2): p. 173-182.
  49. Bregman, D., et al., Percutaneous intraaortic balloon insertion. Am J Cardiol, 1980. 46(2): p. 261-4.
  50. Majithia, A., et al., The Hemodynamic Effects of the MEGA Intra-Aortic Balloon Counterpulsation Pump. The Journal of Heart and Lung Transplantation, 2013. 32(4): p. S226.
  51. Thiele, H., et al., Intraaortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock: design and rationale of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Am Heart J, 2012. 163(6): p. 938-45.
  52. Thiele, H., et al., Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation, 2018.
  53. Shah, M., et al., Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin Res Cardiol, 2018. 107(4): p. 287-303.
  54. Scholz, K.H., et al., Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: results from the German prospective, multicentre FITT-STEMI trial. Eur Heart J, 2018. 39(13): p. 1065-1074.
  55. Perera, D., et al., Long-term mortality data from the balloon pump-assisted coronary intervention study (BCIS-1): a randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention. Circulation, 2013. 127(2): p. 207-12.
  56. Patel, M.R., et al., Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: the CRISP AMI randomized trial. JAMA, 2011. 306(12): p. 1329-37.
  57. Sjauw, K.D., et al., Left ventricular unloading in acute ST-segment elevation myocardial infarction patients is safe and feasible and provides acute and sustained left ventricular recovery. J Am Coll Cardiol, 2008. 51(10): p. 1044-6.
  58. Henriques, J.P., et al., Safety and feasibility of elective high-risk percutaneous coronary intervention procedures with left ventricular support of the Impella Recover LP 2.5. Am J Cardiol, 2006. 97(7): p. 990-2.
  59. Dalal, P.K., et al., Hemodynamic Support Using Percutaneous Transfemoral Impella 5.0 and Impella RP for Refractory Cardiogenic Shock. Case Rep Cardiol, 2019. 2019: p. 4591250.
  60. Nakamura, K., et al., First-in-Man Percutaneous Transaxillary Artery Placement and Removal of the Impella 5.0 Mechanical Circulatory Support Device. J Invasive Cardiol, 2017. 29(5): p. E53-E59.
  61. Ouweneel, D.M., et al., [Support of damaged heart with the Impella pump]. Ned Tijdschr Geneeskd, 2017. 161: p. D1085.
  62. Seyfarth, M., et al., A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol, 2008. 52(19): p. 1584-8.
  63. Amin, A.P., et al., The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support. Circulation, 2020. 141(4): p. 273-284.
  64. Elbadawi, A., et al., Hospital Volume and In-hospital Outcomes with Impella Guided Percutaneous Coronary Interventions: Insights from a National Database. Am J Cardiol, 2020. 125(11): p. 1753-1754.
  65. Bernhardt, A.M., et al., A newly developed transaortic axial flow ventricular assist device: Early clinical experience. J Heart Lung Transplant, 2019. 38(4): p. 466-467.
  66. Anderson, M.B., et al., Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant, 2015. 34(12): p. 1549-60.
  67. Thiele, H., et al., Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J, 2005. 26(13): p. 1276-83.
  68. Burkhoff, D., et al., A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J, 2006. 152(3)
  69. Kar, B., et al., The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol, 2011. 57(6): p. 688-96.
  70. Schmack, B., et al., Results of concomitant groin-free percutaneous temporary RVAD support using a centrifugal pump with a double-lumen jugular venous cannula in LVAD patients. J Thoracic Dis, 2019. 11(Suppl 6): p. S913-S920.
  71. Meani, P., et al., Modalities and Effects of Left Ventricle Unloading on Extracorporeal Life support: a Review of the Current Literature. Eur J Heart Fail, 2017. 19 Suppl 2: p. 84-91.
  72. Ouweneel, D.M., et al., Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med, 2016. 42(12): p. 1922-1934.
  73. Lauten, A., et al., Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. Circ Heart Fail, 2013. 6(1): p. 23-30.
  74. Koreny, M., et al., Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction. Am J Med, 2002. 112(2): p. 115-9.
  75. Jantti, T., et al., Frequency and Prognostic Significance of Abnormal Liver Function Tests in Patients With Cardiogenic Shock. Am J Cardiol, 2017. 120(7): p. 1090-1097.
  76. Masha, L., et al., Yellow Means Caution: Correlations Between Liver Injury and Mortality with the Use of VA-ECMO. ASAIO J, 2019. 65(8): p. 812-818.
  77. Thiele, H., et al., Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J, 2017. 38(47): p. 3523-3531.
  78. Thiele, H., et al., Management of cardiogenic shock. Eur Heart J, 2015. 36(20): p. 1223-30.
  79. Ohman, E.M., et al., Thrombolysis and counterpulsation to improve survival in myocardial infarction complicated by hypotension and suspected cardiogenic shock or heart failure: results of the TACTICS Trial. J Thromb Thrombolysis, 2005. 19(1): p. 33-9.
  80. Urban, P., et al., A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction. The (Swiss) Multicenter Trial of Angioplasty for Shock-(S)MASH. Eur Heart J, 1999. 20(14): p. 1030-8.
  81. Tousek, P., et al., Routine upfront abciximab versus standard periprocedural therapy in patients undergoing primary percutaneous coronary intervention for cardiogenic shock: The PRAGUE-7 Study. An open randomized multicentre study. Acute Card Care, 2011. 13(3): p. 116-22.
  82. Investigators, T., et al., Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA, 2007. 297(15): p. 1657-66.
  83. Wang, Y., et al., Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant, 2012. 31(2): p. 140-9.