Acute Kidney Injury

Jade M Teakell, MD, PhD, FASN
Assistant Professor
Division of Renal Diseases and Hypertension
Outline

• Scope
• Definition
• Tools to diagnose
• Etiology
• Treatments
Why is this important?

• AKI occurs in 10-20% hospitalized patients
 – 40-60% ICU patients

• 5% of ICU patients with AKI require renal replacement therapy (50% mortality).

• AKI is associated with an increased risk for *de novo* CKD, CKD progression, and in some cases death.
Acute Kidney Injury Definition

RIFLE

- **Risk**
 - Increased Cr x 1.5 or GFR decreases >25%
 - Increased Cr x 2 or GFR decreases >50%
 - Increased Cr x 3 or GFR decreases >75% or Cr ≥ 4 mg/dl (with acute rise of ≥ 0.5 mg/dl)

- **Injury**
 - UO <0.5 ml/kg/hr x 6 hr

- **Failure**
 - UO <0.5 ml/kg/hr x 12 hr

- **Loss**
 - UO <0.3 ml/kg/hr x 24 hr or anuria x 12 hr

- **ESRD**
 - Persistent ARF = complete loss of renal function for > 4 weeks

- **2004**

AKIN

- **Cr Criteria**
 - Increased Cr x 1.5 or ≥0.3 mg/dl

- **Urine Output (UO) Criteria**
 - UO <0.5 ml/kg/hr x 6 hr

- **Stage 1**
 - Increased Cr x 2
 - UO <0.5 ml/kg/hr x 12 hr

- **Stage 2**
 - Increased Cr x 2
 - UO <0.3 ml/kg/hr x 24 hr or anuria x 12 hr

- **Stage 3**
 - Increased Cr x 3 or Cr ≥ 4 mg/dl (with acute rise of ≥ 0.5 mg/dl)
 - UO <0.3 ml/kg/hr x 24 hr or anuria x 12 hr

2007

Patients who receive renal replacement therapy (RRT) are considered to have met the criteria for stage 3 irrespective of the stage that they are in at the time of commencement of RRT.
KDIGO Definition of AKI 2012

- Increase in SCr by $\geq 0.3\text{mg/dL}$ within 48 hours
- Increase in SCr to $\geq 1.5 \times$ baseline, known or presumed to have occurred within prior 7 days
- Urine volume $< 0.5\text{mL/kg/h}$ for 6 hours

<table>
<thead>
<tr>
<th>Stage</th>
<th>Serum Creatinine</th>
<th>Urine Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5–1.9 \times baseline
$\text{OR} > 0.3\text{ mg/dL}$ increase</td>
<td>$<0.5\text{mL/kg/h}$ for 6-12h</td>
</tr>
<tr>
<td>2</td>
<td>2.0–2.9 \times baseline</td>
<td>$<0.5\text{mL/kg/h}$ for >12h</td>
</tr>
<tr>
<td>3</td>
<td>3.0 \times baseline
$\text{OR} > 4.0\text{ mg/dL}$ increase
OR Initiation of RRT</td>
<td>$<0.3\text{mL/kg/h}$ for >24h
OR Anuria for >12h</td>
</tr>
</tbody>
</table>
Limitations of Serum Creatinine

• Low Sensitivity – cellular injury that does not affect GFR
• Low Specificity – creatinine can increase/decrease without change in GFR
• Delayed – rise is seen 2-3 days after drop in GFR
• Fluid therapy – may dilute serum creatinine delaying diagnosis
• Inter-laboratory Variation
Work-up

- Basic Metabolic Panel
- Urinalysis with micro
- Fractional excretion of sodium (and/or Urea)
- Urine protein to creatinine ratio (UPC)*
- Autoimmune and infectious serology
- Renal ultrasound
- Renal Biopsy
Urinalysis – Cells

Isomorphic RBCs

Dysmorphic RBCs

Renal Tubular Epithelial Cells (RTE)

Squamous Epithelial Cells

WBCs
Urinalysis - Casts

- Granular
- RBC
- RTE
- WBC
Fractional Excretion of Na/Urea

\[FENa = \frac{UNa \times SCr}{SNa \times UCr} \times 100\% \]

\[FEUrea = \frac{UUN \times SCr}{BUN \times UCr} \times 100\% \]

- FENa < 1% suggests prerenal disease, where reabsorption of almost all of the filtered Na is an appropriate response to decreased renal perfusion.

- FENa > 2% percent usually indicates ATN

- FEUN < 35% suggests prerenal disease

- FEUN can be more accurate than the FENa in patients receiving diuretics when the FENa is higher than expected for clinical prerenal disease
Fractional Excretion of Na - Limitations

- The FENa criterion of less than 1% to diagnose prerenal disease applies **only** to patients with a marked reduction in GFR and oliguria.

- Single measurements of SCr may not provide an accurate estimate of the GFR.

- There are other causes of AKI other than prerenal disease in which the FENa can be less than 1%.

- The FENa may be above 1% when prerenal disease occurs in patients with CKD or any cause of sodium wasting, such as diuretic therapy.
Renal Ultrasound

- Low yield in patients without risk factors or clinical concern for obstruction
- Risk Factors - history of hydronephrosis, recurrent urinary tract infections, a diagnosis consistent with obstruction, non-black race.
 - AND absence of: exposure to nephrotoxins, congestive heart failure, or prerenal AKI
- RUS in AKI – 10-15% with hydronephrosis, but only 3-5% requiring intervention.
Risk Factors for AKI

<table>
<thead>
<tr>
<th>Exposures</th>
<th>Susceptibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis</td>
<td>Dehydration or volume depletion</td>
</tr>
<tr>
<td>Critical illness</td>
<td>Advanced age</td>
</tr>
<tr>
<td>Circulatory shock</td>
<td>Female gender</td>
</tr>
<tr>
<td>Burns</td>
<td>Black race</td>
</tr>
<tr>
<td>Trauma</td>
<td>CKD</td>
</tr>
<tr>
<td>Cardiac surgery (especially with CPB)</td>
<td>Chronic diseases (heart, lung, liver)</td>
</tr>
<tr>
<td>Major noncardiac surgery</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Nephrotoxic drugs</td>
<td>Cancer</td>
</tr>
<tr>
<td>Radiocontrast agents</td>
<td>Anemia</td>
</tr>
<tr>
<td>Poisonous plants and animals</td>
<td></td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; CPB, cardiopulmonary bypass.
Etiologies

AKI

Prerenal

Intrinsic

Postrenal

Acute Tubular Necrosis

Acute Interstitial Nephritis

Acute GN

Acute Vascular Syndromes

Intratubular Obstruction
Etiologies

AKI

Prerenal

Intrinsic

Acute Tubular Necrosis

Acute Interstitial Nephritis

Acute GN

Acute Vascular Syndromes

Postrenal

Intratubular Obstruction
Prerenal AKI

Volume Depletion

Congestive Heart Failure
Liver Failure
Sepsis

Incr Vasoconstriction
• ↑ Angiotensin II
• ↑ Adrenergic stim.
• ↑ Vasopressin

Decr Vasodilation
• ↓ Prostaglandins
• ↓ Nitric Oxide

Renal Hypoperfusion
Volume Depletion

• Isotonic Fluid Volume Deficit
 – Serum Na level remains wnl

• Decreased Cardiac Output
 – Decreased blood pressure, decreased organ/tissue perfusion

• Compensation
 – Neural – baro/chemoreceptors -> ↑SNS, ↑RR
 – Hormonal – renin (RAAS), epi/norepi, ADH
Volume Depletion

• Extra-Renal Losses
 – Blood loss, third-spaced fluids, NPO, AMS
 – GI – vomiting, diarrhea,
 – Skin – excessive sweating, extensive burns, fever

• Renal Losses
 – Intrinsic – salt-wasting, DI, diuretic phase of AKI
 – Extrinsic – excess diuretics, osmotic diuresis
Impaired Autoregulation can lead to “normotensive” prerenal AKI

Abuelo 2007 NEJM
Congestive Heart Failure

- Pulmonary hypertension
- RV failure

- Venous Congestion
 - ↑ Renal venous pressure
 - ↑ Intra-abdominal pressure
 - ↑ Renal interstitial pressure

- Cardiac Output
- Peripheral vascular resistance
- Arterial Underfilling

- Neurohormonal Activation
 - ↑ SNS activity
 - ↑ RAAS activity
 - ↑ AVP release

- Renal Hemodynamics and Renal Salt/Water Excretion

- Myocardial Depressant Factor
Peripheral and splanchnic vasodilatation with inadequate increase in cardiac output

Activation of RAAS, SNS, Vasopressin

Renal Vasoconstriction
Salt/Water Retention

Ascites / Edema

HRS

SBP
Hemorrhage
Infection
Over Diuresis
Large vol para
Prerenal AKI Treatment

• Correction of volume depletion (crystalloids)
• Discontinuation or Dose Adjustment
 – NSAIDS
 – RAAS inhibitors
 – CNIs
• Mgmt of “Effective” Volume Depletion
 – Diuresis in CHF
 – Improving MAP in HRS treatment
 – Antibiotics in Sepsis
• Recognize and Treat Abd Compartment Syndrome
Etiologies

AKI

Prerenal

Intrinsic

Acute Tubular Necrosis

Acute Interstitial Nephritis

Acute GN

Acute Vascular Syndromes

Intratubular Obstruction

Postrenal
Intrinsic Renal

Vasculature
- Vasoconstriction
- Focal ischemia
- Vasodilation
- Thrombosis
- Coagulation
- Inflammation
- Intermittent flow

Microenvironment
- Innate immunity
- Adaptive immunity
- Cellular dysfunction
- Paracrine factors
- Autocrine factors

Tubules
- Apoptosis
- Necrosis
- Mitochondrial dysfunction
- Back-leak
- Detachment
- Obstruction

Systemic factors
- Proinflammatory cytokines
- Antiinflammatory cytokines
Acute Tubular Necrosis

• Ischemic
 – Prolonged prerenal azotemia
 – Hypotension, shock
 – Cardiopulmonary arrest
 – Cardiopulmonary bypass

• Septic
 – Cytokine mediated inflammation
 – Endothelial stress/injury

• Nephrotoxic
 – Abx (aminoglycosides, vancomycin, amphotericin)
 – Chemotherapy (cisplatin, mtx)
 – Contrast?
Sepsis-related AKI/ATN

Mechanisms

- Pro-Inflammatory state
- Cytokine-mediated Cell Injury
- Systemic Vasodilation
- Impaired Microcirculation
Toxins

There is no role for pre- or post-HD for prevention of CIN
Acute Interstitial Nephritis

• Lymphocytic infiltration of the interstitium
 – Drugs (Abx, PPIs, NSAIDs, furosemide, etc)
 – Infection
 – Malignancy
 – Systemic Diseases (SLE, Sjogren’s, TINU, etc)
• Classic Triad (rare) – fever + rash + eosinophilia
• Pyuria, WBC Casts
• Role of glucocorticoids is uncertain (no RTCs)
Urine Eos?

<table>
<thead>
<tr>
<th></th>
<th>Drug Induced-AIN</th>
<th>All Etiologies of AIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All cases (n=548)</td>
<td>Pyuria (n=452)</td>
</tr>
<tr>
<td></td>
<td>>1%</td>
<td>>5%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>35.6</td>
<td>23.3</td>
</tr>
<tr>
<td>Specificity</td>
<td>68.2</td>
<td>91.2</td>
</tr>
<tr>
<td>PPV</td>
<td>14.7</td>
<td>28.8</td>
</tr>
<tr>
<td>NPV</td>
<td>87.3</td>
<td>88.6</td>
</tr>
<tr>
<td>Positive LR</td>
<td>1.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Negative LR</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Glomerulopathies

• **Nephritic (proliferative) pattern** is an *active* urine microscopy with RBC casts and/or dysmorphic red cells and a variable degree of albuminuria.

• **Nephrotic (non-proliferative) pattern** is proteinuria, usually in the nephrotic range (>3.5 g per 24 hours), and an *inactive* microscopy with very few cells or casts.*
Glomerulopathies

General Pathogenic Mechanisms

- Structural GBM Abnormalities
 - Thin Basement Membrane
 - Alports
- Endothelial Injury / Thrombosis
- Antibody-Mediated
 - Anti-GBM
 - ANCA Vasculitis
- Complement Dysregulation
 - MPGN
 - Atypical HUS
 - C3 Glomerulopathy
- Immune Complex-Mediated
 - Membranous
 - Lupus Nephritis
- Podocyte Injury
 - MCD
 - FSGS

IgAN
Acute Vascular Syndromes

• Thrombotic Microangiopathy (TMA)
 – Hemolytic Uremic Syndrome (HUS)
 • Diarrhea, Shiga/Vero Toxin associated
 • Supportive Care, Dialysis if indicated
 – Thrombotic Thrombocytopenic Purpura (TTP)
 • ADAMS13 Deficiency (autoimmune or hereditary)
 • Autoimmune - Supportive care, PLEX, adjuvant steroids/rituximab, rare splenectomy
 – Atypical HUS (aHUS)
 • Complement dysregulation (hereditary or acquired)
 • Supportive care, PLEX, immunosuppression, Eculizumab
Intra Tubular Obstruction

- Protein
 - Myeloma light chain cast nephropathy

- Crystals
 - Uric acid
 - Oxalate
 - Medications
Etiologies

AKI

Prerenal

Intrinsic

Acute Tubular Necrosis

Acute Interstitial Nephritis

Acute GN

Acute Vascular Syndromes

Intratubular Obstruction

Postrenal
Post-Renal AKI

- Obstruction within the kidney leading to dilatation of individual calyces or caliectasis
 - stones, transitional cell carcinoma, blood clots, and sloughed papillae
- Obstruction at or distal to the renal pelvis leading to pelviectasis, hydronephrosis/ureter
 - stones, malignancy, external compression, blood clots, infection (fungus ball), bladder dysfunction
A. Stone in renal pelvis
B. Caliectasis
C. Lymphomatous infiltration
Urinary Tract Obstruction

Symptoms
• Pain
• Change in UOP
• Hypertension
• Hematuria

Lab Findings
• Elevated creatinine
• Hyperkalemia / RTA
• Hematuria/pyuria

Treatment = Relieve the pressure!
• Percutaneous nephrostomy (PCN)
• Ureteral stent / Lithotripsy
• Foley / Suprapubic Catheter
Natural History AKI

1 - FULL RECOVERY

2 - AKI TO CKD

3 - ACUTE-ON-CHRONIC KIDNEY DISEASE

4 - AKI TO ESRD

RENAI FUNCTION

TIME
Natural History AKI

Risk Factors
- Age
- Race / Ethnicity
- Genetic Factors
- Diabetes Mellitus
- Hypertension
- Metabolic syndrome

Disease Modifiers
- Severity of AKI
- Duration of AKI
- No. of Episodes
- Stage of CKD
- Proteinuria

Outcomes
- Cardiovascular events
- Kidney Events
- ESRD
- Disability
- Diminished QOL
- Death
References

- KDIGO Clinical Practice Guideline for Acute Kidney Injury