Introduction

This presentation covers the following topics:

- Settings in which x-ray exposures may occur
- How to minimize your radiation exposure
- How to manage patient radiation exposure
- Typical radiation doses and regulatory limits
- Instructions for personnel in the radiation monitoring program
- Pregnancy & radiation exposure
- Potential biological effects from radiation exposure, and
- Radiation Safety Office contact information
UTHSC-H Residency and Fellowship Programs

- Anesthesiology
- Cardiovascular & Thoracic Surgery
- Dermatology
- Diagnostic & Interventional Imaging (Radiology)
- Emergency Medicine
- Internal Medicine
- Neurological Surgery
- Neurology
- Obstetrics & Gynecology
- Ophthalmology
- Orthopedic Surgery
- Otolaryngology
- Pathology
- Pediatrics
- Physical Medicine & Rehab
- Preventive Medicine
- Psychiatry
- Surgery
- Transitional Year
UTHSC-H Programs Where Residents and Fellows Work in Radiation-Producing Environments (in bold)

- Anesthesiology
- Cardiovascular & Thoracic Surgery
- Dermatology
- Diagnostic & Interventional Imaging (Radiology)
- Emergency Medicine
- Family Medicine
- Internal Medicine
- Neurological Surgery
- Neurology
- Obstetrics & Gynecology
- Ophthalmology
- Orthopedic Surgery
- Otolaryngology
- Pathology
- Pediatrics
- Physical Medicine & Rehab
- Preventive Medicine
- Psychiatry
- Surgery
- Transitional Year
Radiation Monitoring

- In settings where radiation sources may be encountered and historical data indicate that occupational doses are not likely to exceed 10% of the regulatory limit, periodic monitoring is performed to ensure that these trends continue.

- Personal radiation monitoring is required in settings where x-ray exposures are likely to be in excess of 10% of the annual limit, as determined by the nature of an individual’s working conditions.
<table>
<thead>
<tr>
<th>UTHSC-H Residency and Fellowship Programs With Possible X-ray Exposures in Excess of 10% of the Limit (in purple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Anesthesiology</td>
</tr>
<tr>
<td>□ Cardiovascular & Thoracic Surgery</td>
</tr>
<tr>
<td>□ Dermatology</td>
</tr>
<tr>
<td>□ Diagnostic & Interventional Imaging</td>
</tr>
<tr>
<td>□ Emergency Medicine</td>
</tr>
<tr>
<td>□ Family Medicine</td>
</tr>
<tr>
<td>□ Internal Medicine<sup>(1)</sup></td>
</tr>
<tr>
<td>□ Neurological Surgery</td>
</tr>
<tr>
<td>□ Neurology</td>
</tr>
<tr>
<td>□ Obstetrics & Gynecology</td>
</tr>
<tr>
<td>□ Ophthalmology</td>
</tr>
<tr>
<td>□ Orthopedic Surgery</td>
</tr>
<tr>
<td>□ Otolaryngology</td>
</tr>
<tr>
<td>□ Pathology</td>
</tr>
<tr>
<td>□ Pediatrics</td>
</tr>
<tr>
<td>□ Physical Medicine & Rehab</td>
</tr>
<tr>
<td>□ Preventive Medicine</td>
</tr>
<tr>
<td>□ Psychiatry</td>
</tr>
<tr>
<td>□ Surgery</td>
</tr>
<tr>
<td>□ Transitional Year</td>
</tr>
</tbody>
</table>

⁽¹⁾ Specifically cardiology catheterization and nuclear cardiology
Many UTHSC-H Residency and Fellowship Programs Will Place You in Settings Where You Will Be Exposed to Radiation

- Radiation use is very prevalent throughout hospitals
- Many steps have been taken to keep exposures to personnel at a minimum
- You are required to understand the nature of this use, how to keep exposures under limits, and how to maximize a healthy working environment.
- For all personnel the rule is to keep exposures ALARA: i.e., keep exposures As Low As Reasonably Achievable.
- ALARA means that you must learn how to professionally execute your duties while responsibly managing yours and minimizing others’ radiation exposures.
Remember These Key Points To Keep Machine-Produced Exposures To a Minimum

- For machine-produced X rays, radiation emanates primarily from the area of the patient that is undergoing examination.
- A secondary source of much lower intensity is radiation escaping through the x-ray tube housing.
- Machine-produced X-ray radiation exists only when the exposure switch is activated.
Remember These Key Points To Keep Exposure To Everyone at a Minimum

- **Time**
 - Physicians operating x-ray equipment should keep the x-ray “beam-on time” to the minimum necessary.
 - Personnel should limit the time they spend in unshielded environments to that which is necessary to complete their job properly.
Minimizing Radiation Exposure

- Distance

 - To the extent consistent with appropriate medical care, maximize the distance between you and the area of the patient that is actively being x-rayed.
Minimizing Radiation Exposure

How distance from source corresponds to drop off in radiation exposure intensity
Minimizing Radiation Exposure

Distance in a CT Room
Reduce your radiation exposure by stepping back from the scanning ring. The lines below show how distance can minimize radiation exposure.
Minimizing Radiation Exposure

- **Shielding**
 - X rays are easily shielded by a thin layer of dense material, like lead.
 - Protective aprons and leaded glass barriers in diagnostic radiology block most (~90% - 99%) of the radiation.
Minimizing Exposure

- Combining the use of
 - Least Time
 - Greatest distance
 - Good shielding

= ALARA
The Texas Department of State Health Services requires that **occupational** radiation exposures not exceed the following:

<table>
<thead>
<tr>
<th>Target Tissue</th>
<th>Annual Limit (millirem*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Body</td>
<td>5,000</td>
</tr>
<tr>
<td>Extremity</td>
<td>50,000</td>
</tr>
<tr>
<td>Individual Organ</td>
<td>50,000</td>
</tr>
<tr>
<td>Lens of the eye</td>
<td>15,000</td>
</tr>
<tr>
<td>Embryo / Fetus</td>
<td>500 for gestation</td>
</tr>
</tbody>
</table>

A millirem is a small unit of radiation exposure, about what everyone gets everyday from naturally existing radiation in the environment.
Sample Dosimeter Readings (Average Annual Employee Exposures)

<table>
<thead>
<tr>
<th>Work Group</th>
<th>Collar Badge (radiation monitor) Reading (millirem)</th>
<th>Assigned Whole Body Radiation Dose (millirem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interventional Radiologists or Cardiologists</td>
<td>2000</td>
<td>600*</td>
</tr>
<tr>
<td>OR X-ray Technologists</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>ER Nurses</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Anesthesiologists</td>
<td><100</td>
<td><100</td>
</tr>
</tbody>
</table>

*Assigned whole-body dose is lower than dose measured at collar for these workers because they wear a lead apron during procedures and dosimeter only monitors dose to unprotected area.
Patient Dose

- Medical X-rays require a prescription from a physician
- All medically ordered X-rays must be justified by medical need
- No regulatory dose limits exist for patients (physicians are expected to use only what is necessary for medical purposes)
- Order only those x-ray studies necessary to achieve clinical benefit
Range of Patient Effective Doses

<table>
<thead>
<tr>
<th>Examination</th>
<th>Dose (millirem) from Radiography</th>
<th>Dose (millirem) from Computed Tomography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest</td>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td>Abdomen</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>Chest/Abdomen/Pelvis</td>
<td>220</td>
<td>1800</td>
</tr>
<tr>
<td>Head</td>
<td>10</td>
<td>200</td>
</tr>
</tbody>
</table>
Natural and Manmade “Background” Radiation

National Annual Average Exposure is 625 mrem

- Radon: 37%
- Internal Emitters: 6%
- Terrestrial: 5%
- Cosmic: 4%
- Consumer Products: 2%
- Other Man-made sources: 3%
- Medical Radionuclides: 13%
- Interventional Fluoroscopy: 6%
- Diagnostic Imaging: 5%
- Computed Tomography: 24%
- Interventional Fluoroscopy: 6%
- Diagnostic Imaging: 5%

Note: Medical procedures are not occupational but exposures as a patient.
Personnel Monitoring

- Radiation dosimetry (e.g., whole body badge and/or finger ring) is provided to individuals who are likely to receive an exposure greater than 10% of the annual limit.

- The badge results are reviewed by Radiation Safety to ensure that radiation exposures are as low as reasonably achievable (ALARA).
Personnel Monitoring
Collar & Waist Badges

“Single Badging”

Wear a single badge (red) at the collar level, outside your shielding apron or thyroid shield.
Personnel Monitoring
Collar & Waist Badges

Sample Icons Show Dosimeter Placement

Whole Body

Collar
Waist
Fetal
Area

“Double-Badging

Wear one badge (red) at the collar, outside of the apron (or any other lead PPE). Wear the second badge (yellow) underneath the lead apron.
If you are enrolled in the personnel monitoring program, you must:

1. Wear your collar badge near the neck **outside** any protective apron
2. Wear any specially assigned abdomen badge at the waist **under** any protective apron
3. Store your badge away from radiation sources when not in use.
4. If something happens to your badge (lost, the dog ate it), contact Radiation Safety 713-500-5840

Where should you wear your collar badge?

At the collar & outside a lead apron
Personnel Monitoring

- The **timely return** of radiation dosimeters assures prompt processing.

- Dosimetry results are reviewed frequently by Radiation Safety staff to monitor trends and work practices. If dose anomalies or abnormal readings are found, you will be contacted.

- You can review your dosimetry results personally by contacting Radiation Safety at 713 500 5840.

- If you are not in the program and believe you should be, contact Radiation Safety.
Dose Records Example

Radiation Dosimetry Report

<table>
<thead>
<tr>
<th>Participant Number</th>
<th>ID</th>
<th>Birth Date</th>
<th>Sex</th>
<th>Dose Equivalent (rem)</th>
<th>Quarters Accumulated Dose Equivalent (rem)</th>
<th>Year to Date Dose Equivalent (rem)</th>
<th>Lifetime Dose Equivalent (rem)</th>
<th>Incidental Date/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deep Dose</td>
<td>Deep Dose</td>
<td>Deep Dose</td>
<td>Deep Dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eye Dose</td>
<td>Eye Dose</td>
<td>Eye Dose</td>
<td>Eye Dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shallow Dose</td>
<td>Shallow Dose</td>
<td>Shallow Dose</td>
<td>Shallow Dose</td>
<td></td>
</tr>
<tr>
<td>03/01/10 - 03/31/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTRL</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>M</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>2</td>
</tr>
<tr>
<td>VIBODY</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>10</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M: Minimal Reporting Service of 1 rem

Quality Control Release: RCH 15 = PR 9438 - RPT1300 - N1 CE 56624

Texas Radioactive Materials License L02774

Texas Certificate of Registration R10909

NVLA
ALARA Program Review for Residents, Fellows & Faculty at Hermann Hospital

UTHSC-H levels to initiate **ALARA investigation** to ensure doses as low as reasonably achievable (ALARA), doses in mrem

<table>
<thead>
<tr>
<th></th>
<th>Deep Dose (DDE)</th>
<th>Eye Dose (LDE)</th>
<th>Shallow Dose (SDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General ALARA Level</td>
<td>125 per month</td>
<td>375 per month</td>
<td>1,250 per month</td>
</tr>
<tr>
<td>Cardiology & Diagnostic Faculty, Fellows & Residents Using X-rays<sup>‡</sup> ALARA Level</td>
<td>500 per month</td>
<td>1,500 per month</td>
<td>5,000 per month</td>
</tr>
</tbody>
</table>

[‡]Cardiology & Diagnostic faculty, fellows, and residents have 0.3 “EDE2” correction applied for dosimeter worn outside of lead apron
How to Obtain a Badge...

Fill out form (RS-03)

http://www.uthouston.edu/safety/radiation-safety/dosimetry-service.htm
Biological Effects

- **Stochastic effects** are the principal hazard from diagnostic x-rays.

- With a stochastic effect, the probability that the effect will occur increases with dose (more dose, higher risk). Minimizing dose minimizes the risk of occurrence of stochastic effects.

- Examples of stochastic effects are cancer and genetic defects.

- Cancer risk is ~ 0.00008% per millirem effective dose.
If I receive a radiation dose that is within occupational limits, will it cause me to get cancer?

Unlikely. The risk of cancer from doses at or below the occupational limits is considered acceptably low and can be minimized only by professionally keeping your exposure ALARA.

The risk at low doses is so low that scientific investigation has never conclusively demonstrated that there is or is not a slight risk. For the sake of safety, common practice is to assume that even small doses have some chance of causing cancer – thus ALARA is our theme.
Biological Effects

- **Deterministic effects** are effects where there is a threshold or minimum dose necessary before the effect occurs.

- Once the threshold is achieved, the severity of the injury increases as the dose increases.

- Thresholds for occurrence in millirem:
 - Cataracts: 100000 (to lens of eye only)
 - Hair loss: 300000 (to scalp only)
 - Skin erythema: 600000 (local to skin only)
 - Death: ~200000 (whole body to a few folks who are very sensitive)
Pregnancy & Radiation Exposure

- The State of Texas requires exposure to the embryo/fetus of a declared pregnant worker be kept below 500 millirem.
- Early disclosure of pregnancy to the supervisor is encouraged, but not required.
- After a pregnant employee officially declares her pregnancy in writing to the Radiation Safety Office, an exposure history is conducted and extra precautions may be implemented.
- If the pregnant employee wishes to informally notify the Radiation Safety Office, the same safety review and necessary added precautions will be implemented.

http://www.uthouston.edu/safety/radiation-safety/Pregnant%20Employees%20Guide%20to%20Radiation.htm
environments. For these women, our goal is to restrict any gestational irradiation to less than 100 millirem above background. Call the Radiation Safety Program if you have any questions about your working environment. Women who are designated radiation workers, and thus fall under the 300 millirem limit, must voluntarily declare their pregnancy to the Radiation Safety Program in order to ensure implementation of any special precautions that might be necessary to monitor or to restrict their radiation exposure. A declared pregnant worker is a woman who voluntarily informs her employer, in writing, of her pregnancy and gives the estimated date of conception. An employee can declare her pregnancy by filling out a Pregnancy Declaration form available from the Radiation Safety Program. If a pregnancy remains undeclared, the radiation worker and her baby are only restricted to the much higher occupational exposure allowed for a radiation worker.

Advice for Employee and Employer

Although the radiation risks to an unborn child of a radiation worker are not appreciable under normal working conditions, it is a regulatory requirement to limit the radiation dose from occupational exposure to not more than 500 mrem for the entire gestation and to not more than 50 mrem in any month. The employee and employer should work together to decide the best method for accomplishing this goal. Some methods that might be used include: reducing the time spent in radiation areas, wearing some shielding over the abdominal area, and keeping an extra distance from radiation sources when possible. The Radiation Safety Officer will be able to estimate the probable dose to the unborn child during the normal nine-month pregnancy period based on the exposure history. If the predicted dose approaches the limit, the employee and employer should work out schedules or procedures to confine the dose to less than the 500 mrem required limit.

External Hazards

External exposure to radiation can occur from a variety of sources in an academic or medical workplace, either radioactive materials or x-rays may be used in research or medical applications. In any of these workplace situations there is a potential for external exposure to radiation.

It should be remembered that the medical effects of any radiation exposure are due to several factors: the type of radiation (alpha, beta, gamma or x-ray), the amount of radiation, the duration, and the part of the body exposed.

Internal Hazards

Workers should be aware that radiation exposure to the fetus could be from internal sources as well as from external sources. In workplaces such as nuclear medicine clinics and research laboratories where unsealed radioactive materials are routinely used, there is a potential risk of radioactive material entering the body. Pertinent standard radiation precautions include the following:

1. Never smoke, eat, drink, or apply cosmetics where radioactive materials are used.
2. Never pipette by mouth.
3. Use disposable gloves while handling radioactive materials.
4. Wash hands and monitor for radioactive contamination frequently.
5. Wear lab coats or other protective clothing around loose radioactive material.
6. Use certified ventilation hoods when handling volatile or potentially volatile radionuclides.

References:

N.B. All other references available upon request.

Questions? Please call 500-5840 or come by the Radiation Safety Laboratory, CYF G102
Pregnant Employee's Guide to Radiation

This document discusses risks that have been associated with radiation and pregnancy. During the course of employment, the informed pregnant employee, who either works with radiation or who works in environments where she might be incidentally exposed to radiation, will be better prepared to protect herself and her child against potential risks. Methods to minimize radiation risks are explained. Our goal is to manage radiation exposures to levels that are as low as reasonably achievable while not compromising the conduct of duties in the workplace.

Radiation has many forms: heat, light, ultraviolet, microwave, ionizing, and so on. We protect ourselves from overexposure to all these radiations. However, humans have no physical sensation to potentially dangerous levels of ionizing radiation and thus can potentially be exposed to harmful levels without knowing it. Therefore, ionizing radiation (X-rays, gamma rays, beta rays etc.) requires special consideration for safety and management.

Sources of Radiation

All day long, everyone is exposed to ionizing radiation from naturally existing sources that include the earth, the sky, the air and even the food we eat. People in Houston are exposed to approximately 294 mrem per year from these background sources of ionizing radiation while folks in Denver are exposed to about 400 mrem due to their higher altitude and the Rocky Mountain environment. These are de facto safe levels of radiation exposure.

Dose rates from medical exposures that one receives in one’s lifetime will be in the same range as one’s lifetime dosage of background radiation, but medical exposures occur only when prescribed by a healthcare practitioner when it is judged that the medical benefit will outweigh the risks. The average annual dose from diagnostic X-rays to the U.S. population is 40 mrem, while the average contribution by fluoroscopy, CT scans, radiation therapy, and other nuclear medicine procedures is about 270 mrem per year. It should be remembered that only sick people and people at risk of serious illness principally contribute to these numbers.

Effects on the Embryo/Fetus of Exposure to Radiation and Other Environmental Hazards

Exact risks are not known for low dose radiation. The approximate natural risks for birth defects are as follows: 3 - 5% of all births have some type of abnormality detectable at birth and an additional 3 - 5% of all births have some type of condition or disease that develops later in life (not detectable at birth). The risk of a pregnancy ending in a miscarriage or stillbirth is 10 - 30%, depending on many factors.

Average Background Radiation in Houston

294 mrem

Regulatory and the Texas Department of State Health Service Radiation Control

Regulations and guidance are based on the conservative assumption that any amount of radiation, no matter how small, can have a harmful effect on an adult, child, or unborn child. Thus, the risk by this theory is never zero. We can only reasonably restrict the risk to very low levels. Even after more than 100 years of research into this topic, it still is not possible to state that the theory of risk at any level is actually true. This is because at low levels the risks are so small that no increase in adverse health effects above the non-radiation related incidence can be definitely identified. Because it is known that the unborn child is more sensitive to radiation than adults, particularly during certain stages of development, a special dose limit for protection of the unborn child has been established. These limits eliminate risk for birth defects and minimize the risk of induced disease to rates in large populations that cannot be detected even if they exist. For women who do not work in occupational radiation environments the limit is 100 millirem to the embryo/fetus during the entire gestation. For women who work in radiation environments, the limit is 500 millirem per gestation. The former conservatively minimizes risks for the general population, for example persons who visit hospitals or ride on buses. The higher limit is established to assure adequate protection of the child while having minimal effect on employment opportunities for women of childbearing age who seek work in radiation environments. If the limit were unnecessarily low for these persons, many radiation-environment jobs would have to be restricted to men or to women incapable of having children.

Women who do not work with radiation but who are incidentally exposed to radiation during their work should follow the advice of radiation professionals in how to avoid unnecessary exposure to radiation while performing their duties. Special monitoring and protection are available for any pregnant woman who works around such
Declared Pregnancy

When you contact RSP regarding your pregnancy, RSP will schedule a confidential meeting to:

- Review the risks associated with prenatal exposures and methods to minimize risks
- Review previous personnel monitoring results
- Review exposure limits
- Discuss the NRC Regulatory Guide 8.13
- Provide an opportunity for questions
- Provide additional monitoring if appropriate
- Assist you in completing the written declaration
Probability of Radiation Effects for the Embryo/Fetus*

<table>
<thead>
<tr>
<th>Embryo/Fetus Dose (millirem) above natural background</th>
<th>Estimated probability of no malformation</th>
<th>Estimated probability of no childhood cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>97</td>
<td>99.7</td>
</tr>
<tr>
<td>100</td>
<td>97</td>
<td>99.7</td>
</tr>
<tr>
<td>500 (embryo/fetus limit)</td>
<td>97</td>
<td>99.7</td>
</tr>
<tr>
<td>1000</td>
<td>97</td>
<td>99.6</td>
</tr>
<tr>
<td>5000 (occupational limit)</td>
<td>97</td>
<td>99.4</td>
</tr>
</tbody>
</table>

Source: International Commission on Radiological Protection. Publication 84: Pregnancy and Medical Radiation, p38, 2000.
Radiation Safety Permits in Texas

- Permits for radioactive material or x-rays are with Texas Department of State Health Services Radiation Control

- Applicable Rules - 25 TAC §289
 http://www.dshs.state.tx.us/radiation/rules.shtm
 - Notice to Employees 25§289.203

- Each institution maintains applicable radiation safety manuals, operating & safety procedures, etc.
Radiation Safety Office UTHSC-H

- Radiation Safety Website
 http://www.uthouston.edu/safety/radiation-safety/
 - **Forms** is the repository for standard forms (e.g., pregnancy declaration, training & experience)
 - **Policies** lists the basic radiation safety policies

- Office Phone Number: 713 500 5840

- Radiation Emergency: 713 500 8100 or 911
For more information:

- Radiation Answers by the Health Physics Society
 - http://www.radiationanswers.org/

- Image Gently Campaign
 - http://www.asrt.org/patients/image-gently

- American College of Radiology
 - http://www.acr.org/