Maternal Gene–Micronutrient Interactions Related to One-Carbon Metabolism and the Risk of Myelomeningocele Among Offspring

Margaret P. Nguyen1, Philip J. Lupo2, Hope Northrup3, Alanna C. Morrison4, Paul T. Cirino5, and Kit Sing Au*3

Background: Few studies have evaluated interactions between maternal genetic variation in 5,10-methylene-tetrahydrofolate reductase (MTHFR) and micronutrient intake on the risk of myelomeningocele (MM) in offspring. Therefore, we sought to determine if the role of maternal MTHFR C677T and A1298C on MM risk is altered by maternal intake of micronutrients related to one-carbon metabolism. Methods: The study consisted of 220 MM case-parent trios recruited from 1996 to 2006. A dietary questionnaire was used to obtain information on maternal dietary intake on eight micronutrients including folate and cobalamin. TaqMan assays were used to generate MTHFR C677T and A1298C genotypes. Log-linear models were used to evaluate the joint effects of maternal genotype and micronutrient intake dichotomized as at or above versus below the United States Recommended Dietary Allowance (US RDA) on MM. Results: There was little evidence to suggest maternal MTHFR genotypes interacted with micronutrient intake to influence the risk of MM. For instance, the effect of MTHFR 677T was similar for mothers with cobalamin intake below US RDA (relative risk [RR] = 0.97) versus at or above US RDA cobalamin intake (RR = 0.81, interaction p = 0.87). However, some differences were noted. For example, the effect of MTHFR 1298C appeared to be different between those mothers below US RDA folate intake (RR = 0.98) versus those at or above US RDA folate intake (RR = 0.68), but the interaction was not statistically significant (interaction p = 0.27). Conclusion: There did not appear to be strong effects of maternal micronutrient intake on the role of maternal genetic polymorphisms in MTHFR C677T and A1298C on MM risk.

Birth Defects Research (Part A) 00:000–000, 2016. © 2016 Wiley Periodicals, Inc.

Key words: thiamin; riboflavin; niacin; pyridoxine; folate; cobalamin; myelomeningocele

Introduction

The discovery of folate (B9) as a factor in reducing the risk of spina bifida (SB) and the resulting mandate in the United States for maternal folic acid supplementation have led to a substantial decline in the prevalence of these serious congenital malformations (Yi et al., 2011). Folate serves as a single carbon donor in one-carbon metabolism to convert homocysteine to methionine with the aid of enzyme cofactors, such as riboflavin (B2), pyridoxine (B6), and cobalamin (B12) (Mason, 2003). Studies have shown that folate deficiency leads to increased maternal plasma homocysteine level, a finding that has been associated with a risk of SB development (Amouzou et al., 2004; Fekete et al., 2010; Czeizel et al., 2011). Recent studies have also suggested that deficiencies in B vitamins involved in one-carbon metabolism may lead to elevated homocysteine levels and, therefore, may increase the risk for SB (Zhao et al., 2006; Candito et al., 2008; MacFarlane et al., 2011). Conversely, enhanced maternal intake of these B vitamins, particularly those involved in folate metabolism, may be protective against SB (Carmichael et al., 2010; Chandler et al., 2012).

Related to folate metabolism, many studies have demonstrated that single nucleotide polymorphisms (SNPs) in genes of the folate pathway are associated with the development of neural tube defects (NTDs) (Harris and Juriloff, 2007, 2010; Au et al., 2010; Copp and Greene, 2010; Juriloff and Harris, 2012). More specifically, studies that have evaluated both maternal and inherited genotypes have reported that MTHFR C677T and A1298C are associated with NTDs (Yang et al., 2008; Martinez et al., 2009). MTHFR is an enzyme that catalyzes the conversion of 5,10-methylene-tetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate to convert homocysteine to methionine, in one-carbon metabolism. The MTHFR C677T and A1298C variants cause reduced MTHFR enzyme activity (van der Put et al., 1998). However, while MTHFR C677T has been associated with increased plasma homocysteine levels, the same association is not seen with MTHFR A1298C (van der Linden et al., 2006; Crider et al., 2011). Moreover, in mice, MTHFR knock out does not lead to NTDs, raising a question about the specificity of the genetic association with NTDs (Pickell et al., 2009).

1Divisions of Neonatology, Department of Pediatrics, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
2Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
3Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas
4Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas
5Department of Psychology, University of Houston, Houston, Texas

Supported by the National Institutes of Health (1R01HD073434-01A1) and Richard W. Mithoff Professorship Endowment.

*Correspondence to: Kit Sing Au, 6431 Fannin Street, MSB 3.524, Houston, TX 77030. E-mail: kit-sing.au@uth.tmc.edu

Published online 0 Month 2016 in Wiley Online Library (wileyonlinelibrary.com). Doi: 10.1002/bdra.23538

© 2016 Wiley Periodicals, Inc.
The lack of inclusion of the role of maternal micronutrient intake, especially those micronutrients related to one-carbon metabolism, may explain the equivocal evidence in the literature on the role of MTHFR C677T and A1298C genotypes on NTD risk in offspring.

To date, few studies have examined the interactions between environmental factors (e.g., maternal intake of micronutrients involved in one-carbon metabolism) and maternal genetic factors (e.g., MTHFR C677T and A1298C) on the risk of SB in offspring. Furthermore, there are few studies that have examined this interaction in a relatively homogenous case group, for instance, infants affected solely by MM. The purpose of our multicenter case study, therefore, is to determine if the association between maternal MTHFR C677T and A1298C and MM varies by periconceptional maternal micronutrient intake, particularly for the micronutrients involved in one-carbon metabolism. We evaluated the joint effects of maternal gene–micronutrient interactions in a population of 220 well-characterized MM case–parent duos and trios.

Materials and Methods

STUDY SUBJECTS

The study population has previously been described in detail (Au et al., 2008). Briefly, the participants consisted of 220 case–parent trios and duos, with cases affected by MM, recruited from three SB clinics (Houston, TX, Los Angeles, CA, and Toronto, ON, Canada) between 1996 and 2006. Participation of both biologic parents was not required. Both males and females and individuals of all racial/ethnic groups were eligible to participate. The inclusion criteria included children diagnosed with MM and whose parents agreed to enroll and provide blood samples and/or saliva for DNA extraction. Exclusions included patients who had syndromic MM. After written informed consent was received from the parents, a blood sample and/or saliva sample was obtained from each participant.

MATERNAL SURVEYS

Two surveys were used to collect data from mothers participating in the study. The first survey was used to obtain sociodemographic history, pregnancy history, maternal health history, and information on maternal exposures. The second survey, the Diet History Questionnaire (DHQ) from the National Institutes of Health, was used to obtain information on maternal dietary intake and vitamin supplementation, including prenatal vitamins. The second survey required mothers to recall their diet during the course of the affected pregnancy after the delivery had occurred. The instrument is an updated version of the National Cancer Institute Health Habits and History Questionnaire developed by Dr. Gladys Block and colleagues (Subar et al., 2001). The DHQ has been validated and can be self-administered (Subar et al., 2001; Thompson et al., 2002; Boucher et al., 2006; Johnson et al., 2007). For mothers who had low literacy or who had questions, a nurse coordinator or a trained interviewer under her direction performed the interview in its entirety or assisted with questions. Information from the DHQ was then analyzed by the program Diet*Calc (National Institutes of Health, National Cancer Institute) to generate estimates of daily dietary intake from food for the following micronutrients: thiamin (mg), riboflavin (mg), niacin (mg), pyridoxine (mg), folate (µg), cobalamin (µg), iron (mg), and phosphorus (mg). The daily micronutrient intake was then compared with the United States Recommended Dietary Allowance (US RDA) for pregnant women since the case mothers were queried about their dietary regimen during their affected pregnancies.

GENOTYPING METHODS

Genotyping of MTHFR C677T and A1298C have been previously described (Martinez et al., 2009). Briefly, blood samples and/or saliva samples were obtained from patients and both parents when possible. Genomic DNA from blood lymphocytes was extracted using the Puregene DNA kit (Genta Systems Inc., Minneapolis, MN). Saliva DNA was extracted using the Oragene DNA collection kit (DNA Genotek Inc., Ottawa, ON, Canada). Samples were genotyped using the TaqMan genotyping assay method (Life Technologies Inc.), following the manufacturer’s standard protocol. Sanger sequencing was done on over 10% of samples to verify the genotypes as a quality control measure.

STATISTICAL ANALYSIS

Frequency distributions were determined for demographic variables among the case subjects. Additionally, we tested the distributional characteristics of each micronutrient using the Shapiro-Wilk test for normality. None of the micronutrients demonstrated normality. The medians for each micronutrient were, therefore, calculated. For each analyzed variant, samples for which a genotype could not be assigned and case–parent trios that had genotype combinations that were inconsistent with Mendelian inheritance were determined. For each subject, the number of genotyping failures (e.g., genotypes that could not be assigned) was determined. These analyses were performed using Intercooled Stata, version 14.1 (StataCorp LP, College Station, TX). Maternal MTHFR gene–micronutrient combinations were evaluated using log-linear models among case–parent trios.

Specifically, to test the no-interaction null hypothesis, we calculated a 2-degrees-of-freedom likelihood ratio test statistic as twice the difference of the log likelihoods for the log-linear model that included two parameters indexing the inherited genotype for SNP 1 (SNP1), two parameters indexing the maternal genotype for SNP1, and two interaction terms representing the product of maternal SNP1-exposure and a reduced model that excluded the interaction terms (Umbach and Weinberg, 2000; Lupo et al., 2010). These analyses were run using LEM (Vermunt, 1997), a program for log-linear analysis with missing data that allows...
information from case–parent trios that have not been completely genotyped (e.g., father not available) to be included in the analysis for any given variant. Originally 260 mothers were surveyed with the DHQ, but 40 children did not have genotypes because of missing samples or difficulty with genotyping DNA. This resulted in a total of 220 case–parent trios and duos. Of the total, there were 148 complete genotyped trios (father, mother, and child), and 72 genotyped duos (mother and child). We considered a p-value for interaction < 0.05 as statistically significant.

Results

The study population (Table 1) consisted of 220 case trios and duos. The case patients were mostly male (55.9%), with Hispanic (43.6%) and non-Hispanic white (43.6%) as the predominant racial/ethnic groups. The majority of mothers were aged 26 to 30 years (33.2%) or 20 to 25 years (32.7%). Eighty-five mothers took supplements, and 135 mothers did not take supplements during their pregnancy. A majority of mothers were above the US RDA for the following micronutrients (below/above): thiamin (85/135), riboflavin (71/149), cobalamin (57/163), and phosphorus (31/189). However, in some cases, a majority of mothers were below the US RDA for select micronutrients (below/above): folate (171/49), pyridoxine (128/92), and iron (197/23).

The overall micronutrient intake (Table 2) showed that mothers had a higher median micronutrient intake of thiamin (1.6 mg), riboflavin (1.8 mg), cobalamin (3.7 μg), and phosphorus (1262.4 mg) compared with the US RDA for pregnant women. In contrast, maternal median intake of niacin (17.9 mg), pyridoxine (1.6 mg), total folate (400.7 μg), and iron (14.0 mg) were less than the US RDA for pregnant women.

Log-linear models did not reveal significant interactions between maternal MTHFR 677T genotypes and micronutrient intake on MM risk in offspring (Table 3). For example, the effect of MTHFR 677T was similar for mothers below cobalamin intake (relative risk [RR] = 0.97) versus those at or above intake (RR = 0.81, interaction $p = 0.87$). The same was true for folate intake, whereby the effect of MTHFR 677T was similar for mothers below intake (RR = 0.83) versus those at or above intake (RR = 0.97, interaction $p =$
However, some differences were observed in our data. For example, the effect of MTHFR 677T was positively associated with MM in mothers below niacin intake (RR = 1.09), whereas MTHFR 677T was negatively associated with MM among those at or above niacin intake (RR = 0.70). However, the MTHFR 677-niacin interaction was not statistically significant (interaction $p = 0.44$). In fact, no MTHFR 677–micronutrient interactions were found to be statistically significant.

As with MTHFR 677T genotypes, our results did not reveal significant interactions between maternal MTHFR 1298C genotypes and micronutrient intake on MM risk in offspring (Table 4). For instance, the effect of MTHFR 1298C was similar for mothers with below thiamin intake (RR = 0.93, interaction $p = 0.86$). Of note, there did appear to be a modest difference between mothers who were below folate intake (RR = 0.98) versus mothers who were at or above folate intake (RR = 0.68), but the interaction was not statistically significant (interaction $p = 0.27$). While other modest differences were observed, none were statistically significant.

Discussion

Overall, our results did not suggest that the role of maternal MTHFR genotypes on MM risk in offspring was significantly altered by intake of micronutrients associated with one-carbon metabolism. While there were some modest differences noted in mothers with MTHFR 677T genotypes who were at or above the US RDA amounts for select micronutrients, such as niacin, compared with those who were below US RDA amount for the same micronutrients, these differences were not statistically significant. Likewise, in mothers with MTHFR 1298C genotypes, there were nonsignificant differences seen between mothers who were at or above the US RDA intake of select micronutrients, such as folate, versus those who were below the US RDA intake. However, these results suggest that micronutrients, particularly those involved with one-carbon metabolism, do not appear to have a strong effect on MM risk among mothers with either MTHFR 1298C or 677T genotypes.

Some studies have reported that micronutrient intake can influence plasma homocysteine levels among individuals with certain MTHFR C677T genotypes (Bailey et al., 2002; McNulty et al., 2002, 2006). For example, one study reported a decrease in plasma homocysteine as cobalamin concentration increased in individuals who were heterozygous for both MTHFR C677T and A1298C (Bailey et al., 2002) even when vitamin B-12 concentrations were within normal range. These data suggest that increasing the intake of micronutrients involved in one-carbon metabolism may mitigate NTD risk in offspring with MTHFR C677T polymorphisms. From these studies, it seems plausible that cobalamin and other micronutrients involved in one-carbon metabolism could reduce the risk of NTDs among mothers with MTHFR C677T and A1298C genotypes. However, we did not replicate the finding in the current study.

Strengths of our study include the use of the case–parent trio study design. The case–parent trio study design has been shown to provide increased power over the case–control approach when assessing gene–environment interactions.
Our study must be considered in light of certain limitations. Because it is a retrospective study, case mothers may not accurately estimate nutritional intake during pregnancy. Because the study only included mothers of affected children and no controls, the type of misclassification would be nondifferential and bias findings toward the null. Had there been controls, then it would be a differential misclassification, leading to a bias away from the null. Furthermore, the maternal surveys did not query the mothers on whether the affected pregnancy was planned or unplanned. As planners, mothers may have a better preconception diet than mothers who did not plan their pregnancies. Therefore, the proportion of mothers who did not plan their pregnancies could impact the reliability of the dietary intake estimates. Another limitation of our study is the relatively small sample size, perhaps hampering the detection of relatively modest maternal gene–micronutrient interactions on MM risk in offspring. Because of the sample size and the inconsistent use of supplements among mothers, one potential limitation of the assessment is the inability to evaluate the effects based on supplementation use. Furthermore, maternal average daily caloric intake was not included in the analysis as the modeling approach used (log-linear model for evaluating gene–environment interactions) does not allow for the inclusion of covariates. However, the lack of inclusion of maternal average daily caloric intake should not lead to confounding as the modeling strategy evaluates differences in allelic distributions between exposed and unexposed mothers.

Despite the study limitations, the results add to the knowledge of NTD causation and encourage initiation of additional projects examining similar objectives. Replication of these findings in potentially larger populations is needed with the possibility of measuring blood levels of maternal micronutrients to obtain accurate serum micronutrient concentrations. The need to evaluate other genetic polymorphisms is also important in elucidating disease risk in light of micronutrient exposure. Additionally, recent studies have shown that paternal diet could have epigenomic effects on offspring genes that may affect the health status of the offspring (Ost et al., 2014; Wei et al., 2014). These studies may lead to a trend in future study design for gene–micronutrient interactions and birth defects, such as NTDs, to examine the diet of both parents rather than maternal diet alone.

CONCLUSIONS
In conclusion, our study did not demonstrate that micronutrient intake altered the maternal genetic effects of MTHFR C677T and A1298C on MM risk in offspring. The role of vitamin B micronutrients on MM risk remains unclear. Further studies are needed before targeted intervention strategies based on maternal genotypes and micronutrient intake can be developed.

Acknowledgements
We thank Kathleen Kennedy, M.D., M.P.H., Sarah Riosa, Syed Hashmi, M.D., Ph.D., Jack Fletcher, Ph.D., and Carolyn Neal, Ph.D., for their excellent support. The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

References

either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 62:969–978.

