Pediatric Cervical Spine Trauma

When Is Cross-sectional Imaging Needed?

Susan D. John, M.D.

RSNA 2013
Spine Fractures in Children

- Uncommon – 1-3% of pediatric trauma patients
- 60-80% spine fxs in children involve C-spine, especially those <8 yrs of age
- Combined injuries common
 - >60% with C spine injury have head injury, neurologic deficit
 - 0.2% with head injury have C spine injury
- Causes
 - MVC, auto-ped, falls, sports
 - Birth trauma (breech delivery)
 - Non-accidental trauma
Pediatric Spine Differences

• Fractures are rare
• Clinical assessment challenging
• Immobilization can be difficult
• Ossification incomplete
 – Normal variants common
• Mild normal laxity can be present
 – Injuries can occur without fracture
Objectives

• Plan safe and effective imaging protocols for C-spine injuries in infants and children
• Understand mechanisms and patterns of pediatric cervical spine injuries
• Recognize anatomical variations and subtle injuries that benefit from cross-sectional imaging.

www.uth.tmc.edu/radiology
What percentage of patients in your practice are < 15 years of age?

1) 80 - 100%
2) 50 – 79%
3) 25 – 49%
4) 5 – 25%
5) < 5%
When Is C-spine Imaging Needed?

- NEXUS (National Emergency X-ray Utilization) study
 - Children evaluated as part of large, multi-age study (9% of all patients)
 - Criteria
 - Midline cervical tenderness
 - Altered mental alertness
 - Evidence of intoxication
 - Neurologic abnormality
 - Painful distracting injury
 - Only 30 injuries in 3065 patients <18 yrs (0.98%)
 - 4 younger than 9 yrs
 - Decision rule predicted 100%, but not directly applicable to children
Radiographic Evaluation

• Lateral view most valuable
 – Should include C7-T1 disc space
 – 65 – 87% accuracy
• AP view usually obtained, but of questionable value
• Odontoid view difficult to obtain in children <5 years
 – Not needed under age of 9
• Flexion/extension views
 – Not used in acute injuries
 – May be helpful for FU of ligamentous injury
Radiographs for C-spine Injury in Children

• Useful for those familiar with the differences of the immature spine
 – Incomplete development
 – Normal degree of laxity
 – Challenges of obtaining good quality images
 – Congenital anomalies
Which of the following C-spine radiograph findings can be normal in children?

1) Atlantodental distance of 6 mm
2) Anterior tilting of the dens
3) 4 mm anterior displacement of C2 on C3
4) Basion to dens distance of 15 mm
5) Anterior wedging of the C3 vertebral body
Which of the following C-spine radiograph findings can be normal in children?

1) Atlantodental distance of 6 mm
2) Anterior tilting of the dens
3) 4 mm anterior displacement of C2 on C3
4) Basion to dens distance of 15 mm
5) Anterior wedging of the C3 vertebral body
Precervical Soft Tissue Thickness

Can be misleading on radiographs
Normal Neurocentral Synchondrosis (gone by age 8)
Dens Tilting

- Posterior often normal
- Beware of anterior or lateral tilt
Physiologic Hypermobility in Young Children

- Ligamentous laxity leads to misleading appearances on XR
 - Pseudosubluxation
 - Increased interspinous distance
 - Increased dens-to-C1 distance
Wide Interspinous Distance

- Can be as wide as 10-12 mm
Physiologic Subluxation

- 1-2 mm
- Normal spinolaminar line
- Caveat
 - Apophyseal joints intact
Pseudosubluxation occurs in 19% of normal children between 1 – 7 yrs age.
Normal V-shaped apophyseal joints (mild)
Anterior Atlantodental Distance

- May be as wide as 4-5 mm
Change in atlantodens interval of 2mm is normal, with maximum of 5 mm
Normal Mild Lateral Motion
C1 Anomalies

- Common
- Vary from absent posterior arch to hairline defects
Congenital Defects of C1

- Stable as long as dens is normal
Clues to Congenital Defects

- Tapering or rounding of margins
- Hypertrophy of anterior arch
Patterns of Injury

• Infantile (before head control)
 – Birth injuries (traction, torsion)
 – Shaking
 – Stretching may lead to vertebral artery injury

• Young juvenile (head control-8 yrs)
 – Usually above C4
 – Fulcrum at C2-3
 – Incomplete development of vertebra complicates assessment
Patterns of Injury

• Old juvenile
 (greater than 8 yrs age)
 – More like adults
 – Midcervical more common
 – Most ossification centers fused
 • Except for os terminale, ring apophyses, spinous and transverse processes
What initial cervical spine screening exam is used at your facility for children with GCS > 8?

1) None
2) C-spine radiographs
3) C-spine CT
4) C-spine CT if non-verbal
5) MRI
Spine CT in Children

• Use has increased
 – Higher in teenagers, at non-Level I Trauma centers
 Mannix, Acad Emerg Med. 2011 September; 18(9): 905–911

• Concerns about radiation dose in children
 – Dose to thyroid 90-200 X that of multiple x-rays
 Excess risk for thyroid CA 2X higher in 0-4 yr olds
 Jiminez, Pediatr Radiol 2008; 38:635-644
 – Adolescents with spine injury get more studies and have cumulative effective dose 3X that of children
 Lemburg, AJR 2010; 195:1411

• Osseous injuries usually visible on XRIs
 – 4/147 with CT showed abnormality, all seen on lateral Xray
Are Radiographs An Adequate Screening Exam?

- Nigrovic, PECARN C-spine study group. Pediatr Emerg Care 2012; 28(5):426-432
- Multicenter study of 206 children <16 yrs age
 - 168/186 injuries identified on radiographs
 - Sensitivity 90%
 - Missed 15 fractures and 3 isolated ligamentous injuries
- Factors showing higher risk:
 - Abnormal mental status
 - Endotracheal intubation
 - Focal neurologic deficits
When Is CT Worthwhile?

• Consequences of a missed cervical injury can be devastating
 - Error rates (included CT) – false + and -
 • 8 yrs or less – 24% (4/17)
 • 9 yrs or greater – 15% (3/20)
 • Occiput – C2 most common sites
 • Failure to recognize normal anatomy, normal variants

• Ages < 10 years – Should be restricted to problem solving when radiographs are inconclusive
 - Natl. Institute of Health and Clinical Excellence (U.K.) –
 • GCS 8 or less
 • Strong clinical suspicion with normal XR
C1 Synchondroses

Anterior arch:
Ossifies by 1 year
Fuses by age 7

C2 Synchondroses

Injuries can occur at synchondroses, so be wary of asymmetrical widening
Unilateral Absence of C1

C1-2 anomalies are common, difficult to assess on radiographs.

1/3 develop torticollis and symptoms after birth.
Jefferson Fracture

- Uncommon in children
- Falls on head, diving accidents
- Often not visible on radiographs
MRI for Pediatric C-spine Injury

- Highly sensitive for soft tissue injury
 - Sensitivity 100%, NPV 75%, PPV 100%
 - Relevance of subtle findings not established
- Decreases time to clearance and cost
- Cost effective in certain patients
 - Obtunded or non-verbal with severe mechanism of injury
 - Equivocal radiographs
 - Neurologic findings with normal XRs
 - Inability to clear spine within 72 hours
 Frank, Spine 2002; 27(11): 1176-1179
- Important in patients with unstable injuries
C-spine MRI Protocols

- Axial
 - T2 gradient echo
 - T1
- Sagittal
 - T1
 - STIR or T2 fat sat
- Coronal
 - STIR
Dens Anomalies

Prone to instability in some patients

Swischuk, Imaging of the Cervical Spine in Children
Os Odontoideum

- Os is often fused to anterior arch of C1 or to basion
- Posterior atlantodental interval more important than AADI
Controlled flexion/extension under fluoroscopy
Clinical Implications of Os Odontoideum

- Pain
- Myelopathy – varies from transient to paralysis
- Asymptomatic
 - Cases of sudden injury after minor trauma
- MRI evaluates cord atrophy
Odontoid Fractures

- Most common pediatric cervical fracture
- Most occur through basilar synchondrosis
 - Fuses at 5-7 yrs, but remains partially visible until 11
- Heal with halo immobilization (6-8 weeks)
Type II Dens Fractures

Displacement can be subtle on radiographs
Fracture at Neurocentral Synchondrosis
Fracture at C2 Synchondrosis

- Anterior tilt
- Anterior offset
Fracture-Subluxation at C2 may resemble physiologic laxity
Atlanto-occipital dissociation:

1) Is more common in adults than children.
2) Is fatal in 90% of patients.
3) Can manifest as asymmetry of the AO joint.
4) Cannot be diagnosed reliably with radiographs or CT.
Atlanto-occipital dissociation:

1) Is more common in adults than children.
2) Is fatal in 90% of patients.
3) Can manifest as asymmetry of the AO joint.
4) Cannot be diagnosed reliably with radiographs or CT.
Atlantoccipital Dislocation

- More common in children than adults
 - Small condyles
 - More horizontal orientation
- High velocity trauma
- Survival improving, but neurological deficits are common
Basion – dens distance
Should be 12 mm or less

Powers ratio
Should be less than 1
Atlantoccipital Dissociation

- CT allows more accurate measurement of dens-basion distance
- Soft tissue injuries visible when severe
Retroclival Hematoma

- Rare injury
- Elevated tectorial membrane
- Associated with CC ligamentous injuries
- May be treated conservatively if patient asymptomatic
Condyle – C1 Interval

- Highest sensitivity and specificity for AOD
- 4-5 mm or greater – abnormal
- Asymmetry, offset
6 yr old in MVC
Isolated Ligamentous Injuries

- Rare
- Avulsed fragments difficult to see

Transverse Ligament Injury with Avulsion
C1-2 Ligamentous Injuries
Cervical Instability –– Trisomy 21

- Due to ligamentous laxity
- Can occur at multiple levels
- C1-2 instability – 14-17%
- C1 hypoplasia (posterior) - 26%
- <10% have signs of cervical myelopathy
- CT or MRI not usually needed
SCIWORA Injury

- Incidence 6 -20%
- Normal ligamentous laxity allows excess motion without bone injury
- Most common at C5-8
- Spinal column can withstand 2 in. of distraction (infants) – cord and vessels only .25 in.
Pediatric Cervical Injuries without Fracture

- Children under 8 yrs age
 - More severe injuries
 - Upper spine more common
- 52% - delayed paraplegia (up to 4 days)
- Susceptible to reinjury - occult instability?
Cervical Epidural Hematoma

• May result from shearing forces without spine fracture
Spine Injuries in Children

- CT best for questionable fractures on radiographs, neurologic symptoms
- Mild laxity is normal
 - MRI may help identify subtle instability or injuries
- Anomalies
 - CT for better anatomical definition
 - MRI for effects on spinal cord
- More cross-sectional imaging may be warranted in infants with NAT