Emergency Imaging in Vulnerable Populations: The Pediatric Patient

Susan D. John, M.D.

RSNA 2014
How are Children Vulnerable?

• Unable to communicate effectively
• Unable to understand instructions and cooperate
• Pathologies differ from adults
• Unexpected conditions or misleading histories
• Higher risk with radiation exposure
Objectives

• Recognize the special challenges and risks of emergency imaging in pediatric patients
• Understand how patient age determines optimal choices for imaging modality and technique
• Avoid pitfalls in interpretation of imaging studies in children with emergency conditions and injuries

www.uth.tmc.edu/radiology/presentations
Risk of Medical Radiation in Children

- Organ sensitivity, larger dose/body area, longer life span
- Use of radiation-based imaging studies
 - At least 1 study in 40% of children (during 3 yrs)
 - CT
 - 11% of all CT exams performed on children
 - Radiography
 - 85% of all exams (2% of total radiation dose)
 - Potentially increased with digital XR
 - Fluoroscopy
 - 2% of exams
 - Dose highly variable

Potential risk of higher radiation exposures in children highly publicized
Use of CT and Cancer Risk

• Use is beginning to moderate
 • Increased by 2 to 3 times from 1996-2005
 • Stable from 2005-2007
 • Decreased slightly from 2007-2010
• Studies with effective doses >20mSv (2001-11)
 • 14-25% of Abd/pelvis CT
 • 6-14% of spine CT
 • 3-8% of chest CT
• Risk of solid tumor – 1/300-390 Abd/pelv
• Reducing highest 25% of doses could prevent 43% of radiation-induced cancers

Miglioretti, JAMA Pediatr online; June 2013
Minimizing Radiation Exposure

- Strategies for keeping dose low in children
 - Minimizing the extent of exposure
 - Collimation
 - Positioning
 - Shielding
 - No grid for parts less than 10-12 cm in thickness
 - Using lower dose techniques
 - Raising tolerance for image noise
 - Consider using alternative imaging modalities

www.uth.tmc.edu/radiology/presentations
Advice for Decreasing Dose in Pediatric CT
Goske et al, AJR (2008)

- “Child-size” your CT (kVp, mA)
 - Pediatric protocols on IG website (www.imagegently.org)
 - Lower dose protocols for certain body regions
 - Chest
 - Skeleton
 - Paranasal sinuses
 - Indications
 - Renal stones
 - Shunt malfunction

- Lowering dose
 - Low dose localizer, decreased tube current or voltage, increased pitch, scan length, iterative reconstruction

Many resources to help child-size your pediatric protocols
Advice for Decreasing Dose in Pediatric CT

• Scan only when necessary
 • Must develop better definitions of “necessary”
 • PECARN Head CT decision rule (children< 2 yrs)
 • Normal mental status
 • No scalp hematoma (except frontal)
 • No LOC > 5 secs
 • Non-severe injury mechanism
 • No palpable skull fracture
 • Acting normally according to parents
• NPV=100%, sensitivity 100%

Kupperman, Lancet 2009; 374: 1160–70
CT for Pediatric Chest Trauma

- CT will identify more pathology than CXR
 - Contusion/consolidation – 77% vs. 42%
 - Pneumothorax – 33% vs. 7%
 - Rib fracture – 21% vs. 4%
 - Mediastinum (nonvascular) – 10% vs. 2%
- Conditions requiring intervention are virtually all visible on based on CXR
 - Occult pneumothoraces on CXR rarely need tube therapy
 Holscher et al, J of Surg Research 184(2013): 352-357
 Lee et al, Acad Emerg Med (2014) 21:440-448
- CT indicated with high risk mechanism, abnormal CXR
- CT not necessary when CXR is normal
Advice for Decreasing Dose in Pediatric CT

• Scan only the indicated region
 • Requires point of care protocoling
• Scan only once
 • Delayed imaging for trauma scans should be restricted to those cases with high risk injuries on initial pass images

www.uth.tmc.edu/radiology/presentations
Dose Reduction in Digital Radiography

• Why worry about radiography?
 • 85% of ionizing radiation exams in children
 • Avg. child will have 7 XR exams by age 18

• Digital radiography can lead to increasing radiation dose
 • Caused by lack of direct visual feedback

Digital imaging (CR/DR): Equipment compensates for overexposure; film appears to be properly exposed

A. Underexposure
B. Optimal
C. Overexposure

Exposure Creep in DR

• Emergency Care Research Institute 2015 list of top healthcare hazards
 • Exposure creep in digital radiography #7
 • Loss of immediate feedback about overexposure
 • Excessive exposure reduces noise, image looks better
 • Technologists will err on side of overexposure
 • Can lead to progressively increased exposures
 • Attention to exposure indices, better defined pediatric techniques are needed

www.uth.tmc.edu/radiology/presentations
Alternative Imaging Modalities

• Ultrasound an effective screening study for many clinical problems
 • Hypertrophic pyloric stenosis
 • Intussusception
 • Appendicitis

www.uth.tmc.edu/radiology/presentations
Experience Counts in Ultrasound

False positive - stomach was not distended with fluid

False negative – GE junction mistaken for pylorus
Appendicitis

• Presenting symptoms in children differ from adults:
 • No migration of pain in >50% of children
 • No anorexia in > 50% of children
 • No rebound tenderness in > 50% of children
 • Time course of pain commonly less than 24 hours
 • Diarrhea is not uncommon
 • Pain often poorly localized
US for Appendicitis

- Still accepted as best first screening exam
- Staged approach using CT for equivocal cases highly accurate
 - Sensitivity 98.6%
 - Specificity 90.6%
 - CT avoided in 53%

Krishnamoorthi, Radiol Jan. 2011
Thickened Echogenic Fat = Inflammation

Absent peristalsis in RLQ = adynamic ileus

Complex free fluid = peritonitis

Secondary findings can be important clues when the appendix is not visible on US
CT very good but not ideal in young children

- Lack of intra-abdominal fat

Johnson, AJR, Jun 2012; 198:1424
Moore, Pediatr Radiol, Mar 2012; 42:1056
Herliczek, AJR, May 2013; 200: 969

Ultrafast MRI as good or better for some children
Differences in Pathology from Adults

- Infection, trauma, congenital/developmental abnormalities common
 - Neoplasms, vascular disease, chronic conditions uncommon
- Anatomical differences mimic pathology
RSV Infection
Viral Infection with Atelectasis
Unexpected Conditions

- Common in young children with poor ability to communicate problems
Foreign Object Ingestion/Aspiration

- Often unwitnessed
- Non-specific presenting symptoms
 - Cough
 - Wheezing

www.uth.tmc.edu/radiology/presentations
Peanut in L bronchus

Esophageal foreign bodies don’t cause major airway obstruction
Expiratory radiographs can show air-trapping that is subtle on inspiratory views

- Worthwhile whenever the history suggests aspiration
Aspiration Pneumonitis with Toxin Ingestion

- Hydrocarbon ingestion
 - Lamp oil
 - Lighter fluid
 - Ingestion often witnessed

- Lipoid pneumonia
 - Mineral oil for constipation
 - Suppresses cough reflex
 - Aspiration may not be suspected
Non-accidental Trauma

- Histories usually obscure or absent
- Injuries often subtle in young children
- False negatives and false positives common on skeletal imaging
 - Occult rib fractures in acute stage
 - Normal variants that resemble fractures
 - Uncertainty about timing/mechanism of detected fractures

www.uth.tmc.edu/radiology/presentations
Acute rib fractures may not be visible until healing.
8 month old with vomiting and distended abdomen
Perforated jejunum in a battered child
Abdominal Trauma in the Battered Child

- 4-15% of abdominal trauma in children in U.S. is inflicted.
 - >25% of AT in infants is abusive
- >50% of these children are in critical condition when they present
 - Delay in bringing for care
 - Mortality rate – 13-45%
- Recognition of the injuries is often delayed in the ED
Differentiating Accidental from Non-Accidental

- Keep a high index of suspicion, but keep common accidental injuries in perspective

11 day old infant
Traumatic vs Non-traumatic Intracranial Hemorrhage

- Unexplained intracranial hemorrhages raise suspicion of NAT, but causes for non-traumatic brain hemorrhage exist:
 - Sinus thrombosis
 - Infection
 - Metabolic/clotting disorders
 - Stroke
- Evidence of trauma elsewhere in the patient tilts the scales toward NAT
- MRI may be helpful in some cases

www.uth.tmc.edu/radiology/presentations
5 month old found non-responsive in crib

Bone survey normal
Points to Remember

• Use alternatives to CT, whenever sensible
 • US is great for many conditions, but is best when used by those experienced with pediatrics
 • MRI applications are growing in younger patients
• Keep CT doses low with child-sized protocols, single passes, arms over head
• Use patient age to help prioritize possible diagnoses, plan imaging
• Remember that histories can be misleading