Thoracic Aortic Injuries

Kirbi Sullivan
09/16/2019
Diagnostic Radiology RAD 4001
Faculty: Dr. Naga Chinapuvvula, MD

UTHealth
The University of Texas Health Science Center at Houston
McGovern Medical School
History

- 19 year old Female presenting to the ED via life flight after a motor vehicle collision
- Vitals in trauma bay: BP: 86/45, HR: 145 bpm
- Patient was in uncompensated hypovolemic shock and central venous access was obtained for resuscitation
- Past Medical History: None
- Initial evaluation of injuries include: Left renal laceration, left superior/inferior pubic rami fracture, left iliac bone fracture, left femur fracture, aortic transection, extraperitoneal bladder rupture, splenic laceration
Relevant Imaging

• Initial CXR deceivingly normal
Imaging Continued

• Follow up CXR to assess lines and tubes showed tracheal and nasogastric tube deviation to the right.
CT chest/abdomen/pelvis with contrast axial

TA = Thoracic Aorta
SVC = Superior Vena Cava
DA = Descending Aorta
CT chest/abdomen/pelvis with contrast axial
CT Chest/Abdomen/Pelvis Coronal

Red arrow = Pseudoaneurysm
CT Chest/Abdomen/Pelvis Sagittal

Red arrow = Pseudoaneurysm
• Imaging shows a traumatic thoracic aortic pseudo aneurysm with mediastinal hematoma causing tracheal deviation to the right.
Differential Diagnosis

1. Aortic dissection- presents similar to a pseudoaneurysm on axial CT images.
2. Mediastinal mass- leading to shifting of structures within the mediastinum.
3. Pericardial recess- small spaces within the pericardial cavity arising from the transverse pericardial sinus, formed by the reflections of the pericardium. Fluid can pool in the recesses and mimic mediastinal pathology.
Discussion

• Between 1.5-2% of patients with blunt thoracic trauma sustain aortic injuries.

• Traumatic (blunt) aortic injury often involves rapid deceleration, likely from a fall from height or motor vehicle collision, and can be life threatening.

• Early diagnosis is critical. 20% of patients who arrive to the hospital alive with blunt aortic injury die within 30 hours of injury from lethal rupture.
Discussion

• The most common location is the aortic isthmus distal to left subclavian artery.

• This isthmus is the transition zone between the more mobile ascending aorta and arch, and the relatively fixed descending aorta, allowing for stretching with rapid deceleration.
Evaluation

• Initial evaluation includes a plain chest radiograph.

• CT angiography of the chest and TEE (transesophageal echocardiography) are the main imaging modalities used to diagnose blunt aortic injury if suggestive on clinical evaluation.

• CT angiography is recommended in hemodynamically stable patients, while TEE can be used in hemodynamically unstable patients who require prompt assessment.
Aortic Injury Grading

- **GRADE I**: Intimal Tear
- **GRADE II**: Intramural Hematoma
- **GRADE III**: Pseudoaneurysm
- **GRADE IV**: Rupture
Diagnosis

• This patient has a pseudoaneurysm as diagnosed on imaging; a collection of blood between the two outer layers of an artery, the tunica media and tunica adventitia.

• Due to the patient's mechanism of injury and radiologic features, the diagnosis is a Grade 3 Traumatic Aortic Injury.
Treatment

• Endovascular repair of the thoracic aorta is a minimally invasive approach that involves placing a stent-graft in the thoracic or thoracoabdominal aorta.

• Endovascular repair has significantly lower morbidity and mortality compared to open repair.

• CT angiography is used during the procedure to assess the aorta and fit an appropriately sized stent.
Treatment

• The five year survival rate of emergent open thoracic aortic repair is 37%.

• Patient was treated with endovascular repair of pseudoaneurysm with coverage of left subclavian artery on June 2, 5 days after initial presentation.

• Other injuries: The following day (06/03), an exploratory laparotomy was performed due hemorrhagic shock with evacuation of hemoperitoneum and splenectomy.
Treatment

Pseudoaneurysm

Stent covering pseudoaneurysm
Treatment

Stent covering pseudoaneurysm
ACR Appropriateness Criteria

American College of Radiology

ACR Appropriateness Criteria

Clinical Condition: Blunt Chest Trauma — Suspected Aortic Injury

<table>
<thead>
<tr>
<th>Radiologic Procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA chest with IV contrast</td>
<td>9</td>
<td>This is the diagnostic test of choice for suspected blunt aortic injury.</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>X-ray chest</td>
<td>9</td>
<td>Radiographs are complementary to more definitive studies.</td>
<td>⭐</td>
</tr>
<tr>
<td>MRA chest without and with IV contrast</td>
<td>7</td>
<td>This procedure should be performed on patients with contraindication to CTA.</td>
<td>O</td>
</tr>
<tr>
<td>Aortography thoracic</td>
<td>6</td>
<td></td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>CT chest without IV contrast</td>
<td>5</td>
<td></td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>US echocardiography transesophageal</td>
<td>5</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>MRA chest without IV contrast</td>
<td>5</td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate

Relative Radiation Level
Imaging Cost

- CXR= $290 on average on United States
 - 5 CXR= $1,450
- CT Abdomen/Pelvis w/ contrast= $1,392
- Total imaging cost= $2,482
Take Home Points

• Blunt thoracic aortic injuries are most commonly caused by deceleration injuries.
• The isthmus is the most common site of injury.
• It is important to quickly recognize clinical signs of aortic injury in order to get appropriate imaging.
• Endovascular repair has an increased survival rate compared to open repair.
References

• Up to date
• Radiologyassistant.nl
• Radiopedia.org
Questions?