Biography

Dr. Heidelberger earned her undergraduate, graduate and medical degrees at Stony Brook University.  As an undergraduate, Dr. Heidelberger trained in the laboratory of Nobel Prize-winning chemist Dr. Paul C. Lauterbur.  She then performed her dissertation research under the direction of neuroscientist Dr. Gary Matthews. Dr. Heidelberger received her postdoctoral research training in membrane biophysics under the guidance of Nobel Laureate Professor Erwin Neher at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany. Dr. Heidelberger joined the faculty of McGovern Medical School in 1996.

Areas of Interest

Research Interests

The Heidelberger laboratory studies mechanisms of presynaptic plasticity and synaptic communication with the goal of identifying new therapeutic targets for the amelioration of synaptopathic disorders of the central nervous system. In particular, the Heidelberger laboratory investigates presynaptic mechanisms regulating synaptic vesicle dynamics and neurotransmitter exocytosis in two classes of neurons essential for vision, retinal photoreceptors and retinal bipolar cells. The long-term goal is to use this information to augment the development of new therapeutic strategies of vision restoration following photoreceptor loss.

The Heidelberger laboratory is currently exploring the roles of a syntaxin 3B, a retinal-specific phosphoprotein, in the mammalian retina. This protein is required for vision, as evidenced by the Heidelberger laboratory’s recent identification of a new retinal dystrophy in human subjects associated with syntaxin 3B mutations and by physiological and molecular investigations performed in animal models. The Heidelberger laboratory will elucidate the roles of syntaxin 3B and its activity-dependent modification in the regulation of presynaptic structure and function, the transmission of visual information across the mammalian retina, and neuronal survival.

Publications

Visit the PubMed profile page

Selected Papers from PubMed

  • Thoreson WB, Rabl K, Townes-Anderson E, Heidelberger R. (2004). A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42(4):595-605.
  • Burr GS, Mitchell CK, Keflemariam YJ, Heidelberger R and O’Brien J. Calcium-dependent binding of calmodulin to neuronal gap junction proteins. Biochemical and Biophysical Research Communications, 335:1191-1198, 2005.
  • Sherry DM, and Heidelberger R. Distribution of proteins associated with synaptic vesicle endocytosis in the mouse and goldfish retina. Journal of Comparative Neurology, 484(4):440-457, 2005.
  • Zhou ZY, Wan QF, Thakur P and Heidelberger R. (2006). Capacitance measurements in the mouse rod bipolar cell identify a pool of releasable synaptic vesicles. Journal of Neurophysiology, 96(5):2539-2548.
  • Innocenti, B and Heidelberger, R. (2008). Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse. Journal of Neurophysiology, 99(1):25-36.
  • Wan, QF, Vila, A, Zhou ZY, Heidelberger R. (2008). Synaptic vesicle dynamics in mouse rod bipolar cells. Visual Neuroscience, 25(4):523-533.
  • Curtis L*, Datta P*, Liu X, Bogdanova N, Heidelberger R and Janz R. (2010)
    Syntaxin 3B is essential for the exocytosis of synaptic vesicles in ribbon synapses of the retina. Neuroscience 166(3):832-841. *co-first authors
  • Duncan G, Rabl K, Gemp I, Heidelberger R, and Thoreson WB. (2010) Quantitative modeling of synaptic release at the photoreceptor synapse. Biophysical Journal 98(10):2102-2110.
  • Wan QF, Zhou ZY, Thakur P, Vila A, Sherry D, Janz R, and Heidelberger R (2010). SV2B regulates intracellular Ca2+ and synaptic vesicle dynamics. Neuron, 66:884-895.
  • Wan QF and Heidelberger R. Synaptic release at mammalian bipolar cell terminals. (2011). Visual Neuroscience, 28(1):109-119.
  • Wan QF, Nixon E, Heidelberger R. (2012). Regulation of presynaptic calcium in a mammalian synaptic terminal. Journal of Neurophysiology, 108(11):3059-3067.
  • Liu X, Heidelberger R, and Janz R. Phosphorylation of syntaxin 3B by CaMKII regulates the formation of a t-SNARE complex. (2014). Molecular and Cellular Neuroscience, 60:553-562.
  • Datta P, Gilliam J, Thoreson WB, Janz R, Heidelberger R. Biophys J. Two Pools of Vesicles Associated with Synaptic Ribbons Are Molecularly Prepared for Release. 113(10):2281-2298, 2017.
  • Rodarte EM, Ramos MA, Davalos AJ, Moreira DC, Moreno DS, Cardenas EI, Rodarte AI, Petrova Y, Molina S, Rendon LE, Sanchez E, Breaux K, Tortoriello A, Manllo J, Gonzalez EA, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. Munc13 proteins control regulated exocytosis in mast cells.  J Biol Chem. 293(1):345-358, 2018.
  • Gutierrez BA, Chavez MA, Rodarte AI, Ramos MA, Dominguez A, Petrova Y, Davalos AJ, Costa RM, Elizondo R, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. Munc18-2, but not Munc18-1 or Munc18-3, controls compound and single-vesicle-regulated exocytosis in mast cells.  J Biol Chem. 293(19):7148-7159, 2018.
  • Sanchez E, Gonzalez EA, Moreno DS, Cardenas RA, Ramos MA, Davalos AJ, Manllo J, Rodarte AI, Petrova Y, Moreira DC, Chavez MA, Tortoriello A, Lara A, Gutierrez BA, Burns AR, Heidelberger R, Adachi R. Syntaxin 3, but not syntaxin 4, is required for mast cell-regulated exocytosis, where it plays a primary role mediating compound exocytosis.  J Biol Chem,. 294(9):3012-3023, 2019.
  • Hays CL, Grassmeyer JJ, Wen X, Janz R, Heidelberger R, Thoreson WB. Simultaneous Release of Multiple Vesicles from Rods Involves Synaptic Ribbons and Syntaxin 3B.  Biophys J, 118(4):967-979. 2020.
  • Aseervatham J, Li X, Mitchell CK, Lin YP, Heidelberger R, O’Brien J. Calmodulin Binding to Connexin 35: Specializations to Function as an Electrical Synapse.  Int J Mol Sci.;21(17):6346, 2020.
  • Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ Jr, Liu X, Janz R, Heidelberger R. Phosphorylation of the Retinal Ribbon Synapse Specific t-SNARE Protein Syntaxin3B Is Regulated by Light via a Ca2 +-Dependent Pathway.  Front Cell Neurosci. 14:587072, 2020